41 research outputs found

    Extended and revised archaeomagnetic database and secular variation curves from Bulgaria for the last eight millennia

    No full text
    International audienceThe efforts of geophysicists to describe geomagnetic field behaviour in the past lead to creation of different geomagnetic field models. On the other hand, the established regional palaeosecular variations of geomagnetic elements are increasingly used for dating purposes in archaeology. Both of these goals can be achieved if sufficient amounts of long archaeomagnetic data sets exist for different geographical regions. The accumulation of archaeomagnetic determinations began at the middle of the last century, parallel with the progressive development of experimental methodology and acceptance criteria. The presence of great number of old determinations requires their critical assessment. The important question about the reliability of the associated dating intervals should be also re-assessed. All this requires the continuous refinement and extension of the accumulated databases. This paper presents the last synthesis of Bulgarian archaeomagnetic database and the local palaeosecular variation curves obtained using a statistical treatment based on Bayesian approach (RenCurve software). The rock-magnetic characteristics of the newly included, non-published results are summarized

    Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-Path Neolithic expansion to Western Europe

    Get PDF
    Uniparentally-inherited markers on mitochondrial DNA (mtDNA) and the non-recombining regions of the Y chromosome (NRY), have been used for the past 30 years to investigate the history of humans from a maternal and paternal perspective.Researchers have preferred mtDNA due to its abundance in the cells, and comparatively high substitution rate. Conversely, the NRY is less susceptible to back mutations and saturation, and is potentially more informative than mtDNA owing to its longer sequence length. However, due to comparatively poor NRY coverage via shotgun sequencing, and the relatively low and biased representation of Y-chromosome variants on capture arrays such as the 1240K, ancient DNA studies often fail to utilize the unique perspective that the NRY can yield.Here we introduce a new DNA enrichment assay, coined YMCA (Y-mappable capture assay), that targets the “mappable” regions of the NRY. We show that compared to low-coverage shotgun sequencing and 1240K capture, YMCA significantly improves the coverage and number of sites hit on the NRY, increasing the number of Y-haplogroup informative SNPs, and allowing for the identification of previously undiscovered variants.To illustrate the power of YMCA, we show that the analysis of ancient Y-chromosome lineages can help to resolve Y-chromosomal haplogroups. As a case study, we focus on H2, a haplogroup associated with a critical event in European human history: the Neolithic transition. By disentangling the evolutionary history of this haplogroup, we further elucidate the two separate paths by which early farmers expanded from Anatolia and the Near East to western Europe.Competing Interest StatementThe authors have declared no competing interest.Introduction Results and Discussion - Validating the performance of YMCA - Application of YMCA to YHG H2 as a case study - Identifying diagnostic SNPs for improved YHG H2 resolution Discussion Materials and Methods - Data - Contamination quality filtering - Method of Y Haplogroup Assignment - Comparing the Performance of our Y-capture Array Phylogenetic Tree Reconstructio

    Ten millennia of hepatitis B virus evolution

    Get PDF
    Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between similar to 10,500 and similar to 400 years ago. We date the most recent common ancestor of all HBV lineages to between similar to 20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for similar to 4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic.Molecular Technology and Informatics for Personalised Medicine and Healt

    Existence of Classical Solutions of Quasi-Linear Non-Cooperative Elliptic Systems

    Get PDF
    [Popivanov P.; Popivanov Petar; Попиванов Петър]; [Boyadzhiev G.; Бояджиев Г.]; [Markov Y.; Марков Й.]2010 Mathematics Subject Classification: 35J47, 35J57

    Solvability in Classical Sense of Quasi-Linear Non-Cooperative Elliptic Systems and Application

    Get PDF
    [Popivanov P.; Popivanov Petar; Попиванов Петър]; [Boyadzhiev G.; Бояджиев Г.]; [Markov Y.; Марков Й.]2010 Mathematics Subject Classification: 35J47, 35J57

    Early contact between late farming and pastoralist societies in southeastern Europe

    Get PDF
    Archaeogenetic studies have described two main genetic turnover events in prehistoric western Eurasia: one associated with the spread of farming and a sedentary lifestyle starting around 7000-6000 BC (refs. 1-3) and a second with the expansion of pastoralist groups from the Eurasian steppes starting around 3300 BC (refs. 4,5). The period between these events saw new economies emerging on the basis of key innovations, including metallurgy, wheel and wagon and horse domestication6-9. However, what happened between the demise of the Copper Age settlements around 4250 BC and the expansion of pastoralists remains poorly understood. To address this question, we analysed genome-wide data from 135 ancient individuals from the contact zone between southeastern Europe and the northwestern Black Sea region spanning this critical time period. While we observe genetic continuity between Neolithic and Copper Age groups from major sites in the same region, from around 4500 BC on, groups from the northwestern Black Sea region carried varying amounts of mixed ancestries derived from Copper Age groups and those from the forest/steppe zones, indicating genetic and cultural contact over a period of around 1,000 years earlier than anticipated. We propose that the transfer of critical innovations between farmers and transitional foragers/herders from different ecogeographic zones during this early contact was integral to the formation, rise and expansion of pastoralist groups around 3300 BC.Sandra Penske, Adam B. Rohrlach, Ainash Childebayeva, Guido Gnecchi-Ruscone, Clemens Schmid, Maria A. Spyrou, Gunnar U. Neumann, Nadezhda Atanassova, Katrin Beutler, Kamen Boyadzhiev, Yavor Boyadzhiev, Igor Bruyako, Alexander Chohadzhiev, Blagoje Govedarica, Mehmet Karaucak, Raiko Krauss, Maleen Leppek, Igor Manzura, Karen Privat, Shawn Ross, Vladimir Slavchev, Adéla Sobotkova, Meda Toderaş, Todor Valchev, Harald Ringbauer, Philipp W. Stockhammer, Svend Hansen, Johannes Krause & Wolfgang Haa
    corecore