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STUDIA MATHEMATICA

SOLVABILITY IN CLASSICAL SENSE OF QUASI-LINEAR

NON-COOPERATIVE ELLIPTIC SYSTEMS AND

APPLICATION

P. Popivanov, G. Boyadzhiev, Y. Markov

In this article is studied the solvability in classical C2(Ω)
⋂

C(Ω) sense

of quasi-linear non-cooperative weakly coupled systems of elliptic second-
order PDE. The main tool for the research is the method of sub- and super-
solutions. The result is applied to a model example describing two dimen-
sional non-super-conformal minimal surface M2 in R4.

1. Introduction

One of the major applications of the comparison principle is the method of sub-
and super-solutions. It is applied to a quasi-linear non-cooperative elliptic system
and gives some sufficient conditions for it solvability in C2.

Let Ω ∈ Rn be a bounded domain with smooth boundary ∂Ω. In this article
are considered quasi-linear weakly-coupled elliptic systems of the type

(1) Ql(u) = −div al(x, ul,Dul) + F l(x, u1, . . . , uN ,Dul) = f l(x) in Ω

(2) ul(x) = gl(x) on ∂Ω

for l = 1, . . . , N .
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System (1) is strictly elliptic one, i.e. there are monotonously decreasing
continuous function λ(|u|) > 0 and monotonously increasing one Λ(|u|) > 0,

depending only on |u| =
((

u1
)2

+ · · · +
(
uN
)2)1/2

, such that

(3) λ(|u|)
∣∣∣ξl
∣∣∣
2
≤

n∑

i,j=1

∂ali

∂plj
(x, u1, . . . , uN , pl)ξliξ

l
j ≤ Λ(|u|)

∣∣∣ξl
∣∣∣
2

holds for every ul and ξl = (ξl1, . . . , ξ
l
n) ∈ Rn, l = 1, 2, . . . N .

Coefficients al(x, u, p), F l(x, u, p), f l(x) and gl(x) are supposed at least mea-
surable functions in Ω with respect to x variable, and locally Liepschitz continuous
with respect to ul, u and p, i.e.

(4)

∣∣∣F l(x, u, p) − F l(x, v, q)
∣∣∣ ≤ C(K) (|u− v|+ |p− q|) ,

∣∣∣al(x, ul, p)− al(x, vl, q)
∣∣∣ ≤ C(K)

(∣∣∣ul − vl
∣∣∣+ |p− q|

)

holds for every x ∈ Ω, |u|+ |v|+ |p|+ |q| ≤ K, l = 1, . . . , N.

Furthermore we assume al(x, u, p) and F l(x, u, p) to be differentiable on ul

and pl, and
∂ali

∂pj
,
∂ali

∂uk
,
∂F l

∂pl
,
∂F l

∂uk
∈ L1(Ω).

The essence of the method of sub- and super-solution for general operator is
the existence of lower (sub) and upper (super) solution, on one hand, and a kind
of monotonicity of the operator, on the other hand. This way if the operator
is increasing, one can construct monotonically increasing sequence of operators
that are bounded from above, and the initial operator is the lower solution ( in
the opposite case the sequence is monotonically decreasing and is bounded from
below). The feature that gives monotonicity of system (1) is the comparison
principle. It is well studied for cooperative systems (see [1] or [3]), but the non-
cooperative case is much more difficult to study. One result about the validity of
the comparison principle is given in [2]. For sake of completeness in the following
chapter ”Comparison principle for quasi-linear elliptic systems” is recalled this
result.

The construction of the monotonically decreasing sequence is given in details
in [4]. For sake of completeness the main theorem and a sketch of the proof are
recalled in section “Existence of clasical solutions” below.

Hereafter by f−(x) = min(f(x), 0) and f+(x) = max(f(x), 0) are denoted
the non-negative and, respectively, the non-positive part of the function f . The
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same convention is valid for matrices as well. For instance, we denote by M+ the

non-negative part of M , i.e.M+ = {m+
ij(x)}

N

i,j=1
.

2. Comparison principle for quasi-linear elliptic systems

Let u(x) ∈
(
C2(Ω) ∩ C(Ω)

)N
be classical sub-solution of (1), (2). Then

∫

Ω

(
ali(x, ul,Dul)ηlxi

+ F l(x, u1, . . . , uN ,Dul)ηl − f l(x)ηl
)
dx ≤ 0

for l = 1, . . . , N and for every non-negative vector-function η ∈
(
W 1

c (Ω) ∩C(Ω)
)N

(i.e. η = (η1, . . . ηN ), ηl ≥ 0, ηl ∈ W 1,∞(Ω) ∩ C(Ω) and ηl = 0 on ∂Ω).

Analogously, let u(x) ∈
(
C2(Ω) ∩ C(Ω)

)N
be a classical super-solution of (1),

(2). Then

∫

Ω

(
ali(x, ul,Dul)ηlxi

+ F l(x, u1, . . . , uN ,Dul)ηl − f l(x)ηl
)
dx ≥ 0

for l = 1, . . . , N and every non-negative vector-function η ∈
(
W 1

c (Ω) ∩ C(Ω)
)N

.
Recall that the comparison principle holds for (1), (2), if Q(u) ≤ Q(u) in Ω

and u ≤ u on ∂Ω yields u ≤ u in Ω.
Since u(x) and u(x) are sub- and super- solutions, then w̃(x) = u(x) − u(x)

is weak sub-solution of the following problem

−

n∑

i,j=1

Di

(
Bli

j Djw̃
l +Bli

0 w̃
l
)
+

N∑

k=1

El
kw̃

k +

n∑

i=1

H l
iDiw̃

l = 0 in Ω

with non-positive boundary data on ∂Ω, i.e.

∫

Ω




n∑

i,j=1

(
Bli

j Djw̃
l +Bli

0 w̃
l
)
ηlxi

+

N∑

k=1

El
kw̃

kηl +

n∑

i=1

H l
iDiw̃

lηl


 dx ≤ 0 in Ω

Here

Bli
j =

∫ 1

0

∂ali

∂pj
(x, P l)ds Bli

0 =

∫ 1

0

∂ali

∂ul
(x, P l)ds,

P l =
(
vl + s(ul − vl),Dvl + sD(ul − vl)

)

El
k =

∫ 1

0

∂F l

∂uk
(x, Sl)ds,H l

i =

∫ 1

0

∂F l

∂pi
(x, Sl)ds,
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Sl =
(
v + s(u− v),Dvl + sD(ul − vl)

)
.

Therefore w̃+(x) = max (w̃(x), 0) is weak sub-solution of

(5) −
n∑

i,j=1

Di

(
Bli

j Djw̃
l
+ +Bli

0 w̃
l
+

)
+

N∑

k=1

El
kw̃

k
+ +

n∑

i=1

H l
iDiw̃

l
+ = 0 in Ω

with null boundary data on ∂Ω.
Equation (5) is equivalent to

(6) BEw̃+ = (B + E)w̃+ = 0 in Ω,

whereB = diag (B1, B2, . . . BN ), Bl = −

n∑

i,j=1

Di

(
Bli

j Djw̃
l
+ +Bli

0 w̃
l
+

)
+

n∑

i=1

H l
iDiw̃

l
+

and E = {El
k}

N
l,k+1.

Then the following theorem (Theorem (8) in [2]) holds:

Theorem 1. Let (1), (2) be quasi-linear system and corresponding system

BE− in (6) is elliptic one. Then comparison principle holds for system (1), (2)
if BE− is irreducible one and for every j = 1, . . . , n hold

(i) λ+

(
N∑

k=1

∂F k

∂pj
(x, p, ql) +

N∑

i=1

Di
∂aji

∂pj
(x, pj , qj)

)+

> 0 for some x0 ∈ Ω,

(ii) λ+

(
n∑

i=1

Di
∂aji

∂pj
(x, pj , qj) +

∂F j

∂pj
(x, p, qj)

)+

≥ 0 for every x ∈ Ω,

where p, q ∈ Rn and λ is the first eigenvalue of operator BE− in Ω;
or if BE−is reducible one and for every j = 1, . . . , n hold

(i′) λj +

(
N∑

k=1

∂F k

∂pj
(x, p, qj) +

N∑

i=1

Di
∂aji

∂pj
(x, pj, qj)

)+

> 0 for some x0 ∈ Ω,

(ii′) λj +

(
n∑

i=1

Di
∂aji

∂pj
(x, pj , qj) +

∂F j

∂pj
(x, p, qj)

)+

≥ 0 for every x ∈ Ω,

p, q ∈ Rn and λl is the first eigenvalue of operator Bl in Ω.

Note: We remind the reader that BE− stands for the negative part of BE.

Irreducible matrix is one that can not be decomposed to matrices of lower rank,

and respectively, the reducible matrix can be decomposed.
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3. Existence of classical solutions

In order to use the method of sub- and super- solutions we need some constraints
on the growth of the coefficients. Assume that for every l = 1, . . . N

(7)





n∑

i=1




n∑

j=1

DjB
li
j +

(
Bli

0 +H l
i

)



2

,

∣∣∣∣∣

n∑

i=1

(
DiB

li
0

)∣∣∣∣∣



 ≤ b

holds for x ∈ Ω, where b is a positive constant,

(8)

[
n∑

i=1

(
Bli

0 +H l
i

)
.pi.u

l +
n∑

i=1

(
DiB

li
0

)
ul +

n∑

k=1

El
k.uk(x)

]
ul ≥ c1|u|

2 − c2

for every x ∈ Ω, l = 1, . . . N and arbitrary vectors u and p, where c1 = const > 0
and c2 = const ≥ 0,

(9)

∣∣∣∣∣

n∑

i=1

(
Bli

0 +H l
i

)
.pi.u

l +

n∑

i=1

(
DiB

li
0

)
ul +

n∑

k=1

El
k.uk(x)

∣∣∣∣∣ ≤

≤ ε(CM ) + P (p,CM )(1 + |p|2),

where P (p,CM ) → 0 for |p| → ∞ and ε(CM ) is sufficiently small and depends
only on n,N,CM , λ and Λ. λ and Λ are the constants from condition (3) and

(10) CM = max

{
max
∂Ω

|u|,
2max |f(x)|

c1n
,

√
2c2
c1n

}
.

Then the following theorem holds

Theorem 2. Suppose that system (1), (2) satisfies conditions (3) to (9), and
(i), (ii) or (i′), (ii′), according to the structure of matrix E = (El

k). Assume that

v(x) is a classical super-solution and w(x) is a a classical sub-solution of (1), (2).

Then there exists a classical C2(Ω)
⋂

C(Ω) solution u(x) of the problem (1), (2)

with null boundary data.

Since the system (1) is a quasi-linear one, we assume in the following proof
without loss of generality that g(x) = 0.

S k e t c h o f t h e p r o o f. Let us denote

Φ−
l (x, u

1, . . . , uN ) =

n∑

k=1

El−
k uk +

n∑

i=1

(
DiB

li
0

)
ul
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and

Φ+
l (x, u

1, . . . , uN ) =

n∑

k=1

El+
k uk.

1. Consider the sequence of vector-functions u0, u1, . . . uk, . . . , where u0 =
v(x) and uk ∈ H1

0 (Ω) defines uk+1 by induction as a solution of the problem

−
n∑

i,j=1

Di

(
Bli

j Dju
l
k+1 +Bli

0 u
l
k+1

)
+

n∑

i=1

H l
iDiu

l
k+1+Φ−

l (x, u
1
k+1, . . . , u

N
k+1)+σulk+1 =

= f l(x)− Φ+
l (x, u

1
k, . . . , u

N
k ) + σulk in Ω

with null boundary conditions

ulk+1(x) = 0 on ∂Ω

for every l = 1, . . . , N , σ < 0 is a constant.

2. ul0 ≥ ul1 ≥ · · · ≥ ulk+1 ≥ · · · by the comparison principle. ul0 ≥ ul1 since ul0
is a super-solution of (1), (2).

3. The inequality uk+1(x) ≥ w(x) holds for every k, since w(x) is a sub-
solution of the same system (1), (2).

4. The sequence of vector-functions {uk} is monotonously decreasing and
bounded from below in Ω. Therefore there is a function u such that uk(x) → u(x)
point-wise in Ω. Furthermore, (13) yields {uk} is uniformly equicontinuous in
Ω and {uk} < const, since ulk(x) is Holder continuous and therefore |ulk(x) −
ulk(x0)| ≤ c(|x − x0|

β) for every l = 1, . . . , N . By Arzela–Ascoli compactness
criterion there is a sub-sequence {ukj} that converges uniformly to u ∈ C(Ω).
For convenience we denote {ukj} by {uk}.

Since u ∈ C(Ω) and all functions {ukj} satisfy the null boundary conditions,
then u satisfies the boundary conditions as well.

For more details about the smoothness of the limit function u(x) see [4]. �

4. Model example

Our model example is due to R. de Azevedo Tribuzy and I. Guadalupe (see [7]).
Consider the system in R2

(11)

∣∣∣∣∣∣∣

(
K2 − χ2

)1/4
∆2 ln |χ−K| = 2(2K − χ)

(
K2 − χ2

)1/4
∆2 ln |χ+K| = 2(2K + χ)
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where ∆2 = ∂2
x + ∂2

y , K
2 > χ2, K < 0, K = K(x, y) and χ = χ(x, y), where

K(x, y) stands for the Gaussian curvature of the two-dimmensional non-super-
conformal minimal surface M2 in R4, while χ(x, y) is the normal curvature of
M2.

Every couple of solutions (K,χ) define uniquely minimal non-super-conformal
surface M2 in R4 with Gaussian curvature K and normal curvature χ (see [8]).

Let K > χ. Then we denote

(12)

∣∣∣∣
K − χ = eu

K + χ = ev

and transform (11) to

(13)

∣∣∣∣∣
∆u = 3e(3u−v)/4 + e(3v−u)/4

∆v = e(3u−v)/4 + 3e(3v−u)/4

System (13) is quasi-linear, non-cooperative and elliptic one. First we inves-
tigate the validity of the comparison principle.

Assume that Ω is a local map from M2 → M2. Since K is the Gaussian
curvature and χ is the curvature of the normal connection on minimal non-super-
conformal surface M2 in R4, by (12) and geometrical reasons we presume that u
and v are bounded functions in Ω. In other words we suppose there is constant
c(Ω) such that e|u| ≤ c(Ω) and e|v| ≤ c(Ω) and therefore condition (4) holds. In
order to apply Theorem 1 we have to check weaker conditions (i′), (ii′).

There are many results about the lower bound of the first eigenvalue of the
Laplacian in Ω. The following one is given in [5] and [6]. Without loss of generality

we may assume that Ω is a simply connected planar domain. Then λ1 ≥
α

ρ2

where α is a constant and ρ is the radius of the largest ball BΩ inscribed in Ω,
ρ = max

x∈Ω
min
y∈∂Ω

{|x−y|}. Therefore, the smaller is ρ, the larger is the first eigenvalue

λ1. Since conditions (i′), (ii′) for system (13) read

λ1 +

(
∂F 1

∂u
+

∂F 2

∂u

)+

= λ1 +
(
3e(3u−v)/4 − e(3v−u)/4

)+
> 0,

λ1 +

(
∂F 1

∂v
+

∂F 2

∂v

)+

= λ1 +
(
−e(3u−v)/4 + 3e(3v−u)/4

)+
> 0

for some x0 ∈ Ω, and

λ1 +

(
∂F 1

∂u

)+

= λ1 +

(
9

4
e(3u−v)/4 −

1

4
e(3v−u)/4

)+

≥ 0,
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λ1 +

(
∂F 2

∂v

)+

= λ1 +

(
−
1

4
e(3u−v)/4 +

9

4
e(3v−u)/4

)+

≥ 0

for every x ∈ Ω, and by presumption eu ≤ c(Ω) and ev ≤ c(Ω), it is obvious that
for ρ sufficiently small, the inequalities above hold, and therefore comparison
principle is a property of system (13).

Next step is to check conditions of Theorem 2, namely (7), (8) and (9).
For the linearization of the system (1) we use one sub- and one super-solution
of the system. It is obvious that u = v = 0 is a sub-solution of (13), since
∆u = ∆v = 0 < e(3u−v)/4+3e(3v−u)/4 = 3e(3u−v)/4+e(3v−u)/4 = 4, and Q(0) ≤ 0.

On the other hand one super-solution of (13) is u, v, where

(14)

∣∣∣∣
∆u = 4c
∆v = 4c

It is easy to check that e(3u−v)/4 ≤ e(3|u|+|v|)/4 ≤ c3/4.c1/4 = c and therefore
Q(u, v) ≤ 4c.

Remark. In some cases the explicit solution of the above system is well-
known, for instance if Ω is a disk.

For system (13) the coefficients of (5) are as follows:

Bli
j =

∫ 1

0

∂ali

∂pj
(x, P l)ds = δi,j, Bli

0 =

∫ 1

0

∂ali

∂ul
(x, P l)ds = 0,

E1
1 =

∫ 1

0

∂F 1

∂u
(x, S1)ds =

∫ 1

0

(
9

4
e(1−s)(3u−v)/4 −

1

4
e(1−s)(3v−u)/4

)
ds,

E1
2 =

∫ 1

0

∂F 1

∂v
(x, S1)ds =

∫ 1

0

(
−
3

4
e(1−s)(3u−v)/4 +

3

4
e(1−s)(3v−u)/4

)
ds,

E2
1 =

∫ 1

0

∂F 2

∂u
(x, S2)ds =

∫ 1

0

(
3

4
e(1−s)(3u−v)/4 −

3

4
e(1−s)(3v−u)/4

)
ds,

E2
2 =

∫ 1

0

∂F 2

∂v
(x, S2)ds =

∫ 1

0

(
−
1

4
e(1−s)(3u−v)/4 +

9

4
e(1−s)(3v−u)/4

)
ds,

H l
i =

∫ 1

0

∂F l

∂pi
(x, Sl)ds = 0,

where δi,j is Kronecker delta (symbol). In this case P 1 = ((1− s)u, (1 − s)Du),
S1 = ((1− s)u, (1− s)v, (1 − s)Du), P 2 = ((1− s)v, (1− s)Dv) and S2 =(
(1− s)u, (1 − s)v, (1 − s)Dvl

)
.
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Therefore the coefficients of the linearized system (13) are

Bli
j = δi,j, B

li
0 = H l

i = 0,

E1
1 =

9

3u− v

(
e(3u−v)/4 − 1

)
−

1

3v − u

(
e(3v−u)/4 − 1

)
,

(15) E1
2 = −

3

3u− v

(
e(3u−v)/4 − 1

)
+

3

3v − u

(
e(3v−u)/4 − 1

)
,

E2
1 =

3

3u− v

(
e(3u−v)/4 − 1

)
−

3

3v − u

(
e(3v−u)/4 − 1

)
,

E2
2 = −

1

3u− v

(
e(3u−v)/4 − 1

)
+

9

3v − u

(
e(3v−u)/4 − 1

)
.

Note that if we consider equal boundary conditions for u and v in (14), the
system reduces to two equations. Furthermore, since every couple super-solutions
u and v is worthy for the linearization of system (13), we can choose a couple
such that 3u 6= v, u 6= 3v

The conditions of Theorem 2 are easy to check. By (15) we have Bli
j = Bli

0 =

H l
i = 0 for i 6= j and therefore (7) is a trivial inequality. As for (8), we can find

possitive constants c1 and c2 such that

E1
1 .u

2 + E2
1 .uv + E1

2 .vu+ E2
2 .v

2 = E1
1 .u

2 + E2
2 .v

2 ≥ c1(u
2 + v2)− c2

since E2
1 = −E1

2 , u, v are bounded in Ω by presumption, and Ω is small.
The last condition to check is (9). In this case it is

∣∣E1
1 .u+ E1

2 .v
∣∣ ≤ c3/4

2
(5|u|+ 3|v|) ≤ 4c3/4 ln c,

∣∣∣El
2.u+ E2

2 .v
∣∣∣ ≤

c3/4

2
(3|u|+ 5|v|) ≤ 4c3/4 ln c.

In summary, the smaller is the map Ω (by means of BΩ ), the smaller is
c(Ω) and the larger is the first eigenvalue λ1 of system (11). Therefore, if Ω
is sufficiently small, conditions (i), (ii) (or (i′), (i′′)) hold and by Theorem 1
comparison principle holds for system (13). Furthermore, conditions (7)–(9) hold
as well. This way we construct (locally) a classical solution of system (11), and
thereby the following theorem holds:

Theorem 3. There is a classical C2(Ω)
⋂

C(Ω) solution (u, v) of system

(13) in every sufficiently small local map Ω : M2 → M2.
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Since the solution (u, v) of system (13) is bounded in the local map Ω, it
follows that there is corresponding solution (K,χ) of system (11), and (K,χ)
define uniquely in the local map Ω a minimal non-super-conformal surface M2 in
R4 with Gaussian curvature K and normal curvature χ.

Note that the construction above is applicable for any strongly elliptic opera-
tor, not Laplacian only. As it is well-known, the first eigenvalue of the Laplacian
is given by min-max formula

λ1 = inf
u 6=0

∫
Ω |∇u|2∫
Ω |u|2

.

Then by(3) we have

λ(|u|)

∫
Ω |∇u|2∫
Ω |u|2

≤

∫
Ω

∑n
i,j=1

∂ali

∂pl
j

ulxi
ulxj∫

Ω |u|2
≤ Λ(|u|)

∫
Ω |∇u|2∫
Ω |u|2

and the first eigenvalue of operator (1) is bounded by λ.λ1 and Λ.λ1.

Of course, there is another approach to system (11). Define BR = {x2+ y2 <

R2}, SR = ∂BR and consider Dirichlet boundary value problem for (11) with

data K|SR
= B1, χ|SR

= B2, B1 < B2 < 0. After the changes K = −
eu + ev

2
, χ =

eu − ev

2
and 4p = 3u − v, 4q = 3v − u we reduce the solvability of (11) to the

solvability of the following two scalar Dirichlet problems in BR:

(16) ∆2p+ 2ep = 0, p|SR
=

1

4
ln

−(B1 −B2)
3

|B1 +B2|

and

(17). ∆2q + 2eq = 0, q|SR
=

1

4
ln

|B1 −B2|
3

|B1 −B2|

Certainly, (16) and (17) are Liouville type PDE.

Solving if possible (16) and (17) we obtain that

K = −
e

p+q

2 (ep + eq)

2
, χ =

e
p+q

2 (ep − eq)

2
.

Radial solutions of (11) with data B1 = const, B2 = const are found in the
paper [9].
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It is interesting to point out that the general classical solution of the Liouville
equation (16) can be written in the form

(18) p = log
2|φ′(z)|

(1 + |φ2(z)|)
,

where φ′(z) 6= 0, z = x+iy and φ(z) is arbitrary analytic function in some domain
Ω ⊂ C

1 (usually the considerations are local). More precisely, if a classical
solution of (16) exists near some point (x0, y0) then one can find an analytic
function φ(z) near z0 = x0 + iy0 and such that φ′(z) 6= 0 and (16) holds in a tiny
neighbourhood of (x0, y0). Conversely, the function p given by (18) satisfies (16)
in each domain Ω, where φ′(z) 6= 0. In fact, G(z) analytic near z0, G(z0) 6= 0
implies that ∆ log |G| = 0.

Our main conclusion is that the system (11) possesses (at least locally) a
general solution depending on two arbitrary analytic functions in C

1.

Unfortunately, we are able to solve only the constant data Dirichlet problem
for (11). One can easily see that (16), respectively (17) do not possess unique
solution in general.
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