13 research outputs found

    CAGIRE: a wide-field NIR imager for the COLIBRI 1.3 meter robotic telescope

    Full text link
    The use of high energy transients such as Gamma Ray Bursts (GRBs) as probes of the distant universe relies on the close collaboration between space and ground facilities. In this context, the Sino-French mission SVOM has been designed to combine a space and a ground segment and to make the most of their synergy. On the ground, the 1.3 meter robotic telescope COLIBRI, jointly developed by France and Mexico, will quickly point the sources detected by the space hard X-ray imager ECLAIRs, in order to detect and localise their visible/NIR counterpart and alert large telescopes in minutes. COLIBRI is equipped with two visible cameras, called DDRAGO-blue and DDRAGO-red, and an infrared camera, called CAGIRE, designed for the study of high redshift GRBs candidates. Being a low-noise NIR camera mounted at the focus of an alt-azimutal robotic telescope imposes specific requirements on CAGIRE. We describe here the main characteristics of the camera: its optical, mechanical and electronics architecture, the ALFA detector, and the operation of the camera on the telescope. The instrument description is completed by three sections presenting the calibration strategy, an image simulator incorporating known detector effects, and the automatic reduction software for the ramps acquired by the detector. This paper aims at providing an overview of the instrument before its installation on the telescope.Comment: Accepted by Experimental Astronom

    Toward a Human-Centered UML for Risk Analysis - Application to a medical robot

    No full text
    International audienceSafety is now a major concern in many complex systems such as medical robots. A way to control the complexity of such systems is to manage risk. The first and important step of this activity is risk analysis. During risk analysis, two main studies concerning human factors must be integrated: task analysis and human error analysis. This multidisciplinary analysis often leads to a work sharing between several stakeholders who use their own languages and techniques. This often produces consistency errors and understanding difficulties between them. Hence, this paper proposes to treat the risk analysis on the common expression language UML (Unified Modeling Language) and to handle human factors concepts for task analysis and human error analysis based on the features of this language. The approach is applied to the development of a medical robot for tele-echography

    Toward A Human-Centered Uml For Risk Analysis -- Application to . . .

    No full text
    Safety is now a major concern in many complex systems such as medical robots. A way to control the complexity of such systems is to manage risk. The first and important step of this activity is risk analysis. During risk analysis, two main studies concerning human factors must be integrated: task analysis and human error analysis. This multidisciplinary analysis often leads to a work sharing between several stakeholders who use their own languages and techniques. This often produces consistency errors and understanding difficulties between them. Hence, this paper proposes to treat the risk analysis on the common expression language UML (Unified Modeling Language) and to handle human factors concepts for task analysis and human error analysis based on the features of this language. The approach is applied to the development of a medical robot for teleechography

    Ice Sheet Topography from a New CryoSat-2 SARIn Processing Chain, and Assessment by Comparison to ICESat-2 over Antarctica

    No full text
    In this study, we present a new level-2 processing chain dedicated to the CryoSat-2 Synthetic Aperture Radar Interferometric (SARIn) measurements acquired over ice sheets. Compared to the ESA ground segment processor, it includes revised methods to detect waveform leading edges and perform retracking at the Point of Closest Approach (POCA). CryoSat-2 SARIn mode surface height measurements retrieved from the newly developed processing chain are compared to ICESat-2 surface height measurements extracted from the ATL06 product. About 250,000 space–time nearly coincident observations are identified and examined over the Antarctic ice sheet, and over a one-year period. On average, the median elevation bias between both missions is about −18 cm, with CryoSat-2 underestimating the surface topography compared to ICESat-2. The Median Absolute Deviation (MAD) between CryoSat-2 and ICESat-2 elevation estimates is 46.5 cm. These performances were compared to those obtained with CryoSat-2 SARIn mode elevations from the ESA PDGS level-2 products (ICE Baseline-D processor). The MAD between CryoSat-2 and ICESat-2 elevation estimates is significantly reduced with the new processing developed, by about 42%. The improvement is more substantial over areas closer to the coast, where the topography is more complex and surface slope increases. In terms of perspectives, the impacts of surface roughness and volume scattering on the SARIn mode waveforms have to be further investigated. This is crucial to understand geographical variations of the elevation bias between CryoSat-2 and ICESat-2 and continue enhancing the SARIn mode level-2 processing

    Ice Sheet Topography from a New CryoSat-2 SARIn Processing Chain, and Assessment by Comparison to ICESat-2 over Antarctica

    No full text
    In this study, we present a new level-2 processing chain dedicated to the CryoSat-2 Synthetic Aperture Radar Interferometric (SARIn) measurements acquired over ice sheets. Compared to the ESA ground segment processor, it includes revised methods to detect waveform leading edges and perform retracking at the Point of Closest Approach (POCA). CryoSat-2 SARIn mode surface height measurements retrieved from the newly developed processing chain are compared to ICESat-2 surface height measurements extracted from the ATL06 product. About 250,000 space–time nearly coincident observations are identified and examined over the Antarctic ice sheet, and over a one-year period. On average, the median elevation bias between both missions is about −18 cm, with CryoSat-2 underestimating the surface topography compared to ICESat-2. The Median Absolute Deviation (MAD) between CryoSat-2 and ICESat-2 elevation estimates is 46.5 cm. These performances were compared to those obtained with CryoSat-2 SARIn mode elevations from the ESA PDGS level-2 products (ICE Baseline-D processor). The MAD between CryoSat-2 and ICESat-2 elevation estimates is significantly reduced with the new processing developed, by about 42%. The improvement is more substantial over areas closer to the coast, where the topography is more complex and surface slope increases. In terms of perspectives, the impacts of surface roughness and volume scattering on the SARIn mode waveforms have to be further investigated. This is crucial to understand geographical variations of the elevation bias between CryoSat-2 and ICESat-2 and continue enhancing the SARIn mode level-2 processing

    Nanotechnology practical teaching at school and university

    No full text
    International audienceIn the last two decades, the teaching of microelectronics and nanotechnologies has become more and more challenging. First, numerous fundamental sciences converge, which implies the introduction of more and complex theoretical concepts, from simple electronic to quantum mechanics, as well as from chemistry, biology, medicine, ... Here, we present our teaching experience in short practical training programs adapted for secondary and university students where they confront their theoretical background to real life, i.e. by elaborating and testing their own micro/nanosystem for a specified functionality

    Flux reconstruction for the NIR camera CAGIRE at the focus of the ColibrĂ­ telescope

    No full text
    International audienceCAGIRE is the near infrared camera of the ColibrĂ­ robotic telescope, designed for the follow-up of SVOM alerts. It is based on the ALFA 2k x 2k detector, from the LYNRED French Company, operating in "Up the Ramp" mode. An observation consists in a series of short (1-2 minutes) exposures during which the pixels are read out every 1.3 second, while continuously accumulating charges proportionally to the received flux. We discuss here the preprocessing of CAGIRE data and a method that can be used to recover the flux received by each pixel from the slope of the ramp
    corecore