105 research outputs found

    2-Oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase

    Get PDF
    Compared to normal differentiated cells, cancer cells have altered metabolic regulation to support biosynthesis and the expression of the M2 isozyme of pyruvate kinase (PKM2) plays an important role in this anabolic metabolism. While the M1 isoform is a highly active enzyme, the alternatively spliced M2 variant is considerably less active and expressed in tumors. While the exact mechanism by which decreased pyruvate kinase activity contributes to anabolic metabolism remains unclear, it is hypothesized that activation of PKM2 to levels seen with PKM1 may promote a metabolic program that is not conducive to cell proliferation. Here we report the third chemotype in a series of PKM2 activators based on the 2-oxo-N-aryl-1,2,3,4-tetrahydroquinoline-6-sulfonamide scaffold. The synthesis, structure activity relationships, selectivity and notable physiochemical properties are described.National Human Genome Research Institute (U.S.) (Molecular Libraries Initiative of the NIH Roadmap for Medical Research

    Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses

    Get PDF
    Control of intracellular reactive oxygen species (ROS) concentrations is critical for cancer cell survival. We show that, in human lung cancer cells, acute increases in intracellular concentrations of ROS caused inhibition of the glycolytic enzyme pyruvate kinase M2 (PKM2) through oxidation of Cys[superscript 358]. This inhibition of PKM2 is required to divert glucose flux into the pentose phosphate pathway and thereby generate sufficient reducing potential for detoxification of ROS. Lung cancer cells in which endogenous PKM2 was replaced with the Cys[superscript 358] to Ser[superscript 358] oxidation-resistant mutant exhibited increased sensitivity to oxidative stress and impaired tumor formation in a xenograft model. Besides promoting metabolic changes required for proliferation, the regulatory properties of PKM2 may confer an additional advantage to cancer cells by allowing them to withstand oxidative stress.National Institutes of Health (U.S.) (R03MH085679)National Institutes of Health (U.S.) (1P30CA147882)Burroughs Wellcome FundDamon Runyon Cancer Research FoundationSmith Family FoundationStarr Cancer Consortiu

    A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect

    Get PDF
    Cancer cells possess aberrant proteomes that can arise by the disruption of genes involved in physiological protein degradation. Here we demonstrate the presence of promoter CpG island hypermethylation-linked inactivation of DERL3 (Derlin-3), a key gene in the endoplasmic reticulum-associated protein degradation pathway, in human tumours. The restoration of in vitro and in vivo DERL3 activity highlights the tumour suppressor features of the gene. Using the stable isotopic labelling of amino acids in cell culture workflow for differential proteome analysis, we identify SLC2A1 (glucose transporter 1, GLUT1) as a downstream target of DERL3. Most importantly, SLC2A1 overexpression mediated by DERL3 epigenetic loss contributes to the Warburg effect in the studied cells and pinpoints a subset of human tumours with greater vulnerability to drugs targeting glycolysis.Seventh Framework Programme (European Commission) (Grant HEALTH-F5-2010-258236-SYSCOL)Seventh Framework Programme (European Commission) (Grant HEALTH-F2-2011-259015-COLTHERES)Cellex FoundationOlga Torres FoundationEuropean Research Council (EPINORC Project Grant Agreement 268626)Spain. Ministerio de Economia y Competividad (MINECO Project SAF2011-22803)Institute of Health Carlos III (RTICC Grant RD12/0036/0039

    A new family of covalent inhibitors block nucleotide binding to the active site of pyruvate kinase

    Get PDF
    PYK (pyruvate kinase) plays a central role in the metabolism of many organisms and cell types, but the elucidation of the details of its function in a systems biology context has been hampered by the lack of specific high-affinity small-molecule inhibitors. High-throughput screening has been used to identify a family of saccharin derivatives which inhibit LmPYK (Leishmania mexicana PYK) activity in a time- (and dose-) dependent manner, a characteristic of irreversible inhibition. The crystal structure of DBS {4-[(1,1-dioxo-1,2-benzothiazol-3-yl)sulfanyl]benzoic acid} complexed with LmPYK shows that the saccharin moiety reacts with an active-site lysine residue (Lys335), forming a covalent bond and sterically hindering the binding of ADP/ATP. Mutation of the lysine residue to an arginine residue eliminated the effect of the inhibitor molecule, providing confirmation of the proposed inhibitor mechanism. This lysine residue is conserved in the active sites of the four human PYK isoenzymes, which were also found to be irreversibly inhibited by DBS. X-ray structures of PYK isoforms show structural differences at the DBS-binding pocket, and this covalent inhibitor of PYK provides a chemical scaffold for the design of new families of potentially isoform-specific irreversible inhibitors

    A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect

    Get PDF
    Cancer cells possess aberrant proteomes that can arise by the disruption of genes involved in physiological protein degradation. Here we demonstrate the presence of promoter CpG island hypermethylation-linked inactivation of DERL3 (Derlin-3), a key gene in the endoplasmic reticulum-associated protein degradation pathway, in human tumours. The restoration of in vitro and in vivo DERL3 activity highlights the tumour suppressor features of the gene. Using the stable isotopic labelling of amino acids in cell culture workflow for differential proteome analysis, we identify SLC2A1 (glucose transporter 1, GLUT1) as a downstream target of DERL3. Most importantly, SLC2A1 overexpression mediated by DERL3 epigenetic loss contributes to the Warburg effect in the studied cells and pinpoints a subset of human tumours with greater vulnerability to drugs targeting glycolysis

    Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein

    Get PDF
    The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    A Comprehensive Patient-Derived Xenograft Collection Representing the Heterogeneity of Melanoma

    Get PDF
    Therapy of advanced melanoma is changing dramatically. Following mutational and biological subclassification of this heterogeneous cancer, several targeted and immune therapies were approved and increased survival significantly. To facilitate further advancements through pre-clinical in vivo modeling, we have established 459 patient-derived xenografts (PDX) and live tissue samples from 384 patients representing the full spectrum of clinical, therapeutic, mutational, and biological heterogeneity of melanoma. PDX have been characterized using targeted sequencing and protein arrays and are clinically annotated. This exhaustive live tissue resource includes PDX from 57 samples resistant to targeted therapy, 61 samples from responders and non-responders to immune checkpoint blockade, and 31 samples from brain metastasis. Uveal, mucosal, and acral subtypes are represented as well. We show examples of pre-clinical trials that highlight how the PDX collection can be used to develop and optimize precision therapies, biomarkers of response, and the targeting of rare genetic subgroups
    corecore