125 research outputs found

    First records of Gastrotricha from South Africa, with description of a new species of Halichaetonotus (Chaetonotida, Chaetonotidae)

    Get PDF
    During a survey of the biota of the St. Lucia Estuary in the iSimangaliso Wetland Park, South Africa, a number of Gastrotricha were found among samples of meiofauna. Fresh, marine sediment yielded several specimens belonging to a total of seven species. Of these, two are already known from other regions (i.e., Dactylopodola australiensis and Heteroxenotrichula squamosa), one is described as new to science (Halichaetonotussanctaeluciae sp. n.), while the remaining four (Pseudostomella sp., Halichaetonotus sp.1, Halichaetonotus sp. 2, Xenotrichula sp.) require further collections and analysis, in order to establish the extent of their affiliation to species already described. General appearance, shape of hydrofoil scale and the occurrenceof three long spines on the dorsal side make the new species most closely related to H. australis and H. marivagus. The key differences from these taxa and between Halichaetonotus sanctaeluciae sp. n. and H. aculifer are discussed

    Efficacy and toxicity outcomes for patients treated with focal salvage high dose rate brachytherapy for locally recurrent prostate cancer

    Get PDF
    Introduction Isolated local recurrence of prostate cancer following primary radiotherapy or brachytherapy may be treated with focal salvage high dose rate brachytherapy, although there remains an absence of high quality evidence to support this approach. Methods Men with prostate cancer treated consecutively between 2015 and 2018 using 19 Gy in a single fraction high dose rate brachytherapy (HDR) for locally recurrent prostate cancer were identified from an institutional database. Univariable analysis was performed to evaluate the relationship between patient, disease and treatment factors with biochemical progression free survival (bPFS). Results 43 patients were eligible for evaluation. Median follow up duration was 26 months (range 1–60). Median bPFS was 35 months (95% confidence interval 25.6–44.4). Kaplan-Meier estimates for bPFS at 1, 2 and 3 years post salvage were 95.2%, 70.6% and 41.8% respectively. On univariable Cox regression analysis, only nadir PSA was significantly associated with bPFS although the majority of patients were also treated with androgen deprivation therapy. Only one late grade 3 genitourinary toxicity was observed. Conclusion Focal salvage HDR brachytherapy may provide good biochemical control with a low risk of severe toxicity. Further evaluation within clinical trials are needed to establish its role in the management of locally recurrent prostate cancer

    Patchiness and Co-Existence of Indigenous and Invasive Mussels at Small Spatial Scales: The Interaction of Facilitation and Competition

    Get PDF
    Ecological theory predicts that two species with similar requirements will fail to show long-term co-existence in situations where shared resources are limiting, especially at spatial scales that are small relative to the size of the organisms. Two species of intertidal mussels, the indigenous Perna perna and the invasive Mytilus galloprovincialis, form mixed beds on the south coast of South Africa in a situation that has been stable for several generations of these species, even though these populations are often limited by the availability of space. We examined the spatial structure of these species where they co-exist at small spatial scales in the absence of apparent environmental heterogeneity at two sites, testing: whether conspecific aggregation of mussels can occur (using spatial Monte-Carlo tests); the degree of patchiness (using Korcak B patchiness exponent), and whether there was a relationship between percent cover and patchiness. We found that under certain circumstances there is non-random conspecific aggregation, but that in other circumstances there may be random distribution (i.e. the two species are mixed), so that spatial patterns are context-dependent. The relative cover of the species differed between sites, and within each site, the species with higher cover showed low Korcak B values (indicating low patchiness, i.e. the existence of fewer, larger patches), while the less abundant species showed the reverse, i.e. high patchiness. This relationship did not hold for either species within sites. We conclude that co-existence between these mussels is possible, even at small spatial scales because each species is an ecological engineer and, while they have been shown to compete for space, this is preceded by initial facilitation. We suggest that a patchy pattern of co-existence is possible because of a balance between direct (competitive) and indirect (facilitative) interactions

    Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels

    Get PDF
    Different environmental factors could induce epigenetic changes, which are likely involved in the biological invasion process. Some of these factors are driven by humans as, for example, the pollution and deliberate or accidental introductions and others are due to natural conditions such as salinity. In this study, we have analysed the relationship between different stress factors: time in the new location, pollution and salinity with the methylation changes that could be involved in the invasive species tolerance to new environments. For this purpose, we have analysed two different mussels’ species, reciprocally introduced in antipode areas: the Mediterranean blue mussel Mytilus galloprovincialis and the New Zealand pygmy mussel Xenostrobus securis, widely recognized invaders outside their native distribution ranges. The demetylathion was higher in more stressed population, supporting the idea of epigenetic is involved in plasticity process. These results can open a new management protocols, using the epigenetic signals as potential pollution monitoring tool. We could use these epigenetic marks to recognise the invasive status in a population and determine potential biopollutants

    Estimating the age of Calliphora vicina eggs (Diptera: Calliphoridae): determination of embryonic morphological landmarks and preservation of egg samples

    Get PDF
    ORCID No. 0000-0002-8917-9646© The Author(s) 2016. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published version of the article

    Differences in stress tolerance and brood size between a non-indigenous and an indigenous gammarid in the northern Baltic Sea

    Get PDF
    Differences in stress tolerance and reproductive traits may drive the competitive hierarchy between nonindigenous and indigenous species and turn the former ones into successful invaders. In the northern Baltic Sea, the non-indigenous Gammarus tigrinus is a recent invader of littoral ecosystems and now occupies comparable ecological niches as the indigenous G. zaddachi. In laboratory experiments on specimens collected between June and August 2009 around Tva¨rminne in southern Finland (59°500N/23°150E), the tolerances towards heat stress and hypoxia were determined for the two species using lethal time, LT50, as response variable. The brood size of the two species was also studied and some observations were made on maturation of juveniles. Gammarus tigrinus was more resistant to hypoxia and survived at higher temperatures than G. zaddachi. Brood size was also greater in G. tigrinus than in G. zaddachi and G. tigrinus matured at a smaller size and earlier than G. zaddachi. Hence, there are clear competitive advantages for the non-indigenous G. tigrinus compared to the indigenous G. zaddachi, and these may be further strengthened through ongoing environmental changes related to increased eutrophication and a warming climate in the Baltic Sea region

    Cheating the locals: invasive mussels steal and benefit from the cooling effect of indigenous mussels

    Get PDF
    The indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of these two species may change as global temperatures continue to rise

    Effects of Endolithic Parasitism on Invasive and Indigenous Mussels in a Variable Physical Environment

    Get PDF
    Biotic stress may operate in concert with physical environmental conditions to limit or facilitate invasion processes while altering competitive interactions between invaders and native species. Here, we examine how endolithic parasitism of an invasive and an indigenous mussel species acts in synergy with abiotic conditions of the habitat. Our results show that the invasive Mytilus galloprovincialis is more infested than the native Perna perna and this difference is probably due to the greater thickness of the protective outer-layer of the shell of the indigenous species. Higher abrasion due to waves on the open coast could account for dissimilarities in degree of infestation between bays and the more wave-exposed open coast. Also micro-scale variations of light affected the level of endolithic parasitism, which was more intense at non-shaded sites. The higher levels of endolithic parasitism in Mytilus mirrored greater mortality rates attributed to parasitism in this species. Condition index, attachment strength and shell strength of both species were negatively affected by the parasites suggesting an energy trade-off between the need to repair the damaged shell and the other physiological parameters. We suggest that, because it has a lower attachment strength and a thinner shell, the invasiveness of M. galloprovincialis will be limited at sun and wave exposed locations where endolithic activity, shell scouring and risk of dislodgement are high. These results underline the crucial role of physical environment in regulating biotic stress, and how these physical-biological interactions may explain site-to-site variability of competitive balances between invasive and indigenous species
    corecore