8,794 research outputs found
Learning 3D Navigation Protocols on Touch Interfaces with Cooperative Multi-Agent Reinforcement Learning
Using touch devices to navigate in virtual 3D environments such as computer
assisted design (CAD) models or geographical information systems (GIS) is
inherently difficult for humans, as the 3D operations have to be performed by
the user on a 2D touch surface. This ill-posed problem is classically solved
with a fixed and handcrafted interaction protocol, which must be learned by the
user. We propose to automatically learn a new interaction protocol allowing to
map a 2D user input to 3D actions in virtual environments using reinforcement
learning (RL). A fundamental problem of RL methods is the vast amount of
interactions often required, which are difficult to come by when humans are
involved. To overcome this limitation, we make use of two collaborative agents.
The first agent models the human by learning to perform the 2D finger
trajectories. The second agent acts as the interaction protocol, interpreting
and translating to 3D operations the 2D finger trajectories from the first
agent. We restrict the learned 2D trajectories to be similar to a training set
of collected human gestures by first performing state representation learning,
prior to reinforcement learning. This state representation learning is
addressed by projecting the gestures into a latent space learned by a
variational auto encoder (VAE).Comment: 17 pages, 8 figures. Accepted at The European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases 2019
(ECMLPKDD 2019
Collision and Diffusion in Microwave Breakdown of Nitrogen Gas in and around Microgaps
The microwave induced breakdown of N2 gas in microgaps was modeled using the
collision frequency between electrons and neutral molecules and the effective
electric field concept. Low pressure breakdown at the threshold electric field
occurs outside the gap, but at high pressures it is found to occur inside the
microgap with a large threshold breakdown electric field corresponding to a
very large electron oscillation amplitude. Three distinct pressure regimes are
apparent in the microgap breakdown: a low pressure multipactor branch, a
mid-pressure Paschen branch, both of which occur in the space outside the
microgap, and a high pressure diffusion-drift branch, which occurs inside the
microgap. The Paschen and diffusion-drift branches are divided by a sharp
transition and each separately fits the collision frequency model. There is
evidence that considerable electron loss to the microgap faces accompanies the
diffusion-drift branch in microgaps.Comment: 4 figure
Novel inferences of ionisation & recombination for particle/power balance during detached discharges using deuterium Balmer line spectroscopy
The physics of divertor detachment is determined by divertor power, particle
and momentum balance. This work provides a novel analysis technique of the
Balmer line series to obtain a full particle/power balance measurement of the
divertor. This supplies new information to understand what controls the
divertor target ion flux during detachment.
Atomic deuterium excitation emission is separated from recombination
quantitatively using Balmer series line ratios. This enables analysing those
two components individually, providing ionisation/recombination source/sinks
and hydrogenic power loss measurements. Probabilistic Monte Carlo techniques
were employed to obtain full error propagation - eventually resulting in
probability density functions for each output variable. Both local and overall
particle and power balance in the divertor are then obtained. These techniques
and their assumptions have been verified by comparing the analysed synthetic
diagnostic 'measurements' obtained from SOLPS simulation results for the same
discharge. Power/particle balance measurements have been obtained during
attached and detached conditions on the TCV tokamak.Comment: The analysis results of this paper were formerly in arXiv:1810.0496
An analytical study of resonant transport of Bose-Einstein condensates
We study the stationary nonlinear Schr\"odinger equation, or Gross-Pitaevskii
equation, for a one--dimensional finite square well potential. By neglecting
the mean--field interaction outside the potential well it is possible to
discuss the transport properties of the system analytically in terms of ingoing
and outgoing waves. Resonances and bound states are obtained analytically. The
transmitted flux shows a bistable behaviour. Novel crossing scenarios of
eigenstates similar to beak--to--beak structures are observed for a repulsive
mean-field interaction. It is proven that resonances transform to bound states
due to an attractive nonlinearity and vice versa for a repulsive nonlinearity,
and the critical nonlinearity for the transformation is calculated
analytically. The bound state wavefunctions of the system satisfy an
oscillation theorem as in the case of linear quantum mechanics. Furthermore,
the implications of the eigenstates on the dymamics of the system are
discussed.Comment: RevTeX4, 16 pages, 19 figure
Proton NMR studies of the electronic structure of ZrH/sub x/
The proton spin lattice relaxation times and Knight shifts were measured in f.c.c. (delta-phase) and f.c.t. (epsilon-phase) ZrH/sub x/ for 1.5 or = to x or = to 2.0. Both parameters indicate that N(E/sub F/) is very dependent upon hydrogen content with a maximum occurring at ZrH1 83. This behavior is ascribed to modifications in N(E/sub F/) through a fcc/fct distortion in ZrH/sub x/ associated with a Jahn-Teller effect
Earthquake networks based on similar activity patterns
Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism
for which is still not fully understood despite decades of research and
analysis. We propose and develop a network approach to earthquake events. In
this network, a node represents a spatial location while a link between two
nodes represents similar activity patterns in the two different locations. The
strength of a link is proportional to the strength of the cross-correlation in
activities of two nodes joined by the link. We apply our network approach to a
Japanese earthquake catalog spanning the 14-year period 1985-1998. We find
strong links representing large correlations between patterns in locations
separated by more than 1000 km, corroborating prior observations that
earthquake interactions have no characteristic length scale. We find network
characteristics not attributable to chance alone, including a large number of
network links, high node assortativity, and strong stability over time.Comment: 8 pages text, 9 figures. Updated from previous versio
- …