89 research outputs found

    Plasma Proteomic Profiles of Cerebrospinal Fluid-Defined Alzheimer's Disease Pathology in Older Adults.

    Get PDF
    Cerebrospinal fluid (CSF) biomarkers of the beta-amyloid and microtubule associated protein tau metabolism have proven the capacity to improve classification of subjects developing Alzheimer's disease (AD). The blood plasma proteome was characterized to further elaborate upon the mechanisms involved and identify proteins that may improve classification of older adults developing an AD dementia. Identify and describe plasma protein expressions that best classify subjects with CSF-defined presence of AD pathology and cerebral amyloidosis. We performed a cross-sectional analysis of samples collected from community-dwelling elderly with (n = 72) or without (n = 48) cognitive impairment. CSF Aβ1-42, tau, and phosphorylated tau (P-tau181) were measured using ELISA, and mass spectrometry quantified the plasma proteomes. Presence of AD pathology was defined as CSF P-tau181/Aβ1-42 > 0.0779, and presence of amyloidosis was defined as CSF Aβ1-42 < 724 pg/mL. Two hundred and forty-eight plasma proteins were quantified. Plasma proteins did not improve classification of the AD CSF biomarker profile in the whole sample. When the analysis was separately performed in the cognitively impaired individuals, the diagnosis accuracy of AD CSF profile was 88.9% with 19 plasma proteins included. Within the full cohort, there were 16 plasma proteins that improved diagnostic accuracy of cerebral amyloidosis to 92.4%. Plasma proteins improved classification accuracy of AD pathology in cognitively-impaired older adults and appeared representative of amyloid pathology. If confirmed, those candidates could serve as valuable blood biomarkers of the preclinical stages of AD or risk of developing AD

    Nab: Measurement Principles, Apparatus and Uncertainties

    Get PDF
    The Nab collaboration will perform a precise measurement of 'a', the electron-neutrino correlation parameter, and 'b', the Fierz interference term in neutron beta decay, in the Fundamental Neutron Physics Beamline at the SNS, using a novel electric/magnetic field spectrometer and detector design. The experiment is aiming at the 10^{-3} accuracy level in (Delta a)/a, and will provide an independent measurement of lambda = G_A/G_V, the ratio of axial-vector to vector coupling constants of the nucleon. Nab also plans to perform the first ever measurement of 'b' in neutron decay, which will provide an independent limit on the tensor weak coupling.Comment: 12 pages, 6 figures, 1 table, talk presented at the International Workshop on Particle Physics with Slow Neutrons, Grenoble, 29-31 May 2008; to appear in Nucl. Instrum. Meth. in Physics Research

    Markers of neuroinflammation associated with Alzheimer's disease pathology in older adults.

    Get PDF
    In vitro and animal studies have linked neuroinflammation to Alzheimer's disease (AD) pathology. Studies on markers of inflammation in subjects with mild cognitive impairment or AD dementia provided inconsistent results. We hypothesized that distinct blood and cerebrospinal fluid (CSF) inflammatory markers are associated with biomarkers of amyloid and tau pathology in older adults without cognitive impairment or with beginning cognitive decline. To identify blood-based and CSF neuroinflammation marker signatures associated with AD pathology (i.e. an AD CSF biomarker profile) and to investigate associations of inflammation markers with CSF biomarkers of amyloid, tau pathology, and neuronal injury. Cross-sectional analysis was performed on data from 120 older community-dwelling adults with normal cognition (n=48) or with cognitive impairment (n=72). CSF Aβ1-42, tau and p-tau181, and a panel of 37 neuroinflammatory markers in both CSF and serum were quantified. Least absolute shrinkage and selection operator (LASSO) regression was applied to determine a reference model that best predicts an AD CSF biomarker profile defined a priori as p-tau181/Aβ1-42 ratio >0.0779. It was then compared to a second model that included the inflammatory markers from either serum or CSF. In addition, the correlations between inflammatory markers and CSF Aβ1-42, tau and p-tau181 levels were assessed. Forty-two subjects met criteria for having an AD CSF biomarker profile. The best predictive models included 8 serum or 3 CSF neuroinflammatory markers related to cytokine mediated inflammation, vascular injury, and angiogenesis. Both models improved the accuracy to predict an AD biomarker profile when compared to the reference model. In analyses separately performed in the subgroup of participants with cognitive impairment, adding the serum or the CSF neuroinflammation markers also improved the accuracy of the diagnosis of AD pathology. None of the inflammatory markers correlated with the CSF Aβ1-42 levels. Six CSF markers (IL-15, MCP-1, VEGFR-1, sICAM1, sVCAM-1, and VEGF-D) correlated with the CSF tau and p-tau181 levels, and these associations remained significant after controlling for age, sex, cognitive impairment, and APOEε4 status. The identified serum and CSF neuroinflammation biomarker signatures improve the accuracy of classification for AD pathology in older adults. Our results suggest that inflammation, vascular injury, and angiogenesis as reflected by CSF markers are closely related to cerebral tau pathology

    One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond.

    Get PDF
    Hyperhomocysteinemia is a risk factor for cognitive decline and dementia, including Alzheimer disease (AD). Homocysteine (Hcy) is a sulfur-containing amino acid and metabolite of the methionine pathway. The interrelated methionine, purine, and thymidylate cycles constitute the one-carbon metabolism that plays a critical role in the synthesis of DNA, neurotransmitters, phospholipids, and myelin. In this study, we tested the hypothesis that one-carbon metabolites beyond Hcy are relevant to cognitive function and cerebrospinal fluid (CSF) measures of AD pathology in older adults. Cross-sectional analysis was performed on matched CSF and plasma collected from 120 older community-dwelling adults with (n = 72) or without (n = 48) cognitive impairment. Liquid chromatography-mass spectrometry was performed to quantify one-carbon metabolites and their cofactors. Least absolute shrinkage and selection operator (LASSO) regression was initially applied to clinical and biomarker measures that generate the highest diagnostic accuracy of a priori-defined cognitive impairment (Clinical Dementia Rating-based) and AD pathology (i.e., CSF tau phosphorylated at threonine 181 [p-tau181]/β-Amyloid 1-42 peptide chain [Aβ1-42] >0.0779) to establish a reference benchmark. Two other LASSO-determined models were generated that included the one-carbon metabolites in CSF and then plasma. Correlations of CSF and plasma one-carbon metabolites with CSF amyloid and tau were explored. LASSO-determined models were stratified by apolipoprotein E (APOE) ε4 carrier status. The diagnostic accuracy of cognitive impairment for the reference model was 80.8% and included age, years of education, Aβ1-42, tau, and p-tau181. A model including CSF cystathionine, methionine, S-adenosyl-L-homocysteine (SAH), S-adenosylmethionine (SAM), serine, cysteine, and 5-methyltetrahydrofolate (5-MTHF) improved the diagnostic accuracy to 87.4%. A second model derived from plasma included cystathionine, glycine, methionine, SAH, SAM, serine, cysteine, and Hcy and reached a diagnostic accuracy of 87.5%. CSF SAH and 5-MTHF were associated with CSF tau and p-tau181. Plasma one-carbon metabolites were able to diagnose subjects with a positive CSF profile of AD pathology in APOE ε4 carriers. We observed significant improvements in the prediction of cognitive impairment by adding one-carbon metabolites. This is partially explained by associations with CSF tau and p-tau181, suggesting a role for one-carbon metabolism in the aggregation of tau and neuronal injury. These metabolites may be particularly critical in APOE ε4 carriers

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    Global Retinoblastoma Presentation and Analysis by National Income Level

    Get PDF
    Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4) were female. Most patients (n = 3685 84.7%) were from low-and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 62.8%), followed by strabismus (n = 429 10.2%) and proptosis (n = 309 7.4%). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 95% CI, 12.94-24.80, and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 95% CI, 4.30-7.68). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs. © 2020 American Medical Association. All rights reserved
    corecore