68 research outputs found

    LCO observations of a super-critical distorted pulsation in the roAp star J0855 (TYC 2488-1241-1)

    Get PDF
    We report the results of a 60-hr photometric campaign of a rapidly oscillating Ap star, J0855 (TYC 2488-1241-1). We have utilised the multi-site Las Cumbres Observatory’s (LCO) 0.4- m telescopes to obtain short cadence B−band observations of an roAp star previously lacking detailed study. Our observations confirm the rotation period presented in the discovery paper of this star (Prot = 3.0918 d), and reveal the star to be pulsating in a distorted mode. The B data show this star to be among the highest amplitude roAp stars, with a peak-to-peak amplitude of 24 mmag. Modelling of the pulsation frequency at 197.2714 d−1 (2283 µHz; P = 7.30 min) shows that this star belongs to the subgroup of super-critical pulsators, where the observed frequencies are above the theoretical acoustic cutoff frequency. From the modelling, we deduce that the star’s rotation axis is inclination angle of about 30◦ to the line-of-sight, with an angle of obliquity of the magnetic axis to the rotation axis of either 40◦ or 24◦ depending on whether the pulsation mode is dipole or quadrupole, respectively

    EPIC 201585823, a rare triple-mode RR Lyrae star discovered in K2 mission data

    Get PDF
    We have discovered a new, rare triple-mode RR Lyr star, EPIC 201585823, in the Kepler K2 mission Campaign 1 data. This star pulsates primarily in the fundamental and first-overtone radial modes, and, in addition, a third non-radial mode. The ratio of the period of the non-radial mode to that of the first-overtone radial mode, 0.616 285, is remarkably similar to that seen in 11 other triple-mode RR Lyr stars, and in 260 RRc stars observed in the Galactic bulge. This systematic character promises new constraints on RR Lyr star models. We detected subharmonics of the non-radial mode frequency, which are a signature of period doubling of this oscillation; we note that this phenomenon is ubiquitous in RRc and RRd stars observed from space, and from ground with sufficient precision. The non-radial mode and subharmonic frequencies are not constant in frequency or in amplitude. The amplitude spectrum of EPIC 201585823 is dominated by many combination frequencies among the three interacting pulsation mode frequencies. Inspection of the phase relationships of the combination frequencies in a phasor plot explains the ‘upward’ shape of the light curve. We also found that raw data with custom masks encompassing all pixels with significant signal for the star, but without correction for pointing changes, is best for frequency analysis of this star, and, by implication, other RR Lyr stars observed by the K2 mission. We compare several pipeline reductions of the K2 mission data for this star

    The ESO UVES/FEROS Large Programs of TESS OB pulsators. I. Global stellar parameters from high-resolution spectroscopy

    Full text link
    Modern stellar structure and evolution theory experiences a lack of observational calibrations for the interior physics of intermediate- and high-mass stars. This leads to discrepancies between theoretical predictions and observed phenomena mostly related to angular momentum and element transport. Analyses of large samples of massive stars connecting state-of-the-art spectroscopy to asteroseismology may provide clues on how to improve our understanding of their interior structure. We aim to deliver a sample of O- and B-type stars at metallicity regimes of the Milky Way and the Large Magellanic Cloud (LMC) galaxies with accurate atmospheric parameters from high-resolution spectroscopy, along with a detailed investigation of line-profile broadening, for future asteroseismic studies. After describing the general aims of our two Large Programs, we develop dedicated methodology to fit spectral lines and deduce accurate global stellar parameters from high-resolution multi-epoch UVES and FEROS spectroscopy. We use the best available atmosphere models for three regimes covered by our global sample, given its breadth in terms of mass, effective temperature, and evolutionary stage. Aside from accurate atmospheric parameters and locations in the Hertzsprung-Russell diagram, we deliver detailed analyses of macroturbulent line broadening, including estimation of the radial and tangential components. We find that these two components are difficult to disentangle from spectra with signal-to-noise ratios below 250. Future asteroseismic modelling of the deep interior physics of the most promising stars in our sample will improve the existing dearth of such knowledge for large samples of OB stars, including those of low metallicity in the LMC.Comment: Accepted for publication in Astronomy & Astrophysic

    A unifying explanation of complex frequency spectra of γ Dor, SPB and Be stars: combination frequencies and highly non-sinusoidal light curves

    Get PDF
    There are many Slowly Pulsating B (SPB) stars and γ Dor stars in the Kepler mission data set. The light curves of these pulsating stars have been classified phenomenologically into stars with symmetric light curves and with asymmetric light curves. In the same effective temperature ranges as the γ Dor and SPB stars, there are variable stars with downward light curves that have been conjectured to be caused by spots. Among these phenomenological classes of stars, some show ‘frequency groups’ in their amplitude spectra that have not previously been understood. While it has been recognized that non-linear pulsation gives rise to combination frequencies in a Fourier description of the light curves of these stars, such combination frequencies have been considered to be a only a minor constituent of the amplitude spectra. In this paper, we unify the Fourier description of the light curves of these groups of stars, showing that many of them can be understood in terms of only a few base frequencies, which we attribute to g-mode pulsations, and combination frequencies, where sometimes a very large number of combination frequencies dominate the amplitude spectra. The frequency groups seen in these stars are thus tremendously simplified. We show observationally that the combination frequencies can have amplitudes greater than the base frequency amplitudes, and we show theoretically how this arises. Thus for some γ Dor and SPB stars, combination frequencies can have the highest observed amplitudes. Among the B stars are pulsating Be stars that show emission lines in their spectra from occasional ejection of material into a circumstellar disc. Our analysis gives strong support to the understanding of these pulsating Be stars as rapidly rotating SPB stars, explained entirely by g-mode pulsations

    Amplitude modulation in δ Sct stars: statistics from an ensemble of Kepler targets

    Get PDF
    The results of a search for amplitude modulation of pulsation modes in 983 δ Sct stars, which have effective temperatures between 6400 ≤ Teff ≤ 10 000 K in the Kepler Input Catalogue and were continuously observed by the Kepler Space Telescope for 4 yr, are presented. A total of 603 δ Sct stars (61.3 per cent) are found to exhibit at least one pulsation mode that varies significantly in amplitude over 4 yr. Furthermore, it is found that amplitude modulation is not restricted to a specific region within the classical instability strip in the HR diagram, therefore its cause is not necessarily dependent on stellar parameters such as Teff or log g. On the other hand, many δ Sct stars show constant pulsation amplitudes demonstrating that the cause of pulsational non-linearity in these stars is not well understood

    Asteroseismology of massive stars with the TESS mission: the runaway Beta Cep pulsator PHL 346 = HN Aqr

    Full text link
    We report an analysis of the first known Beta Cep pulsator observed by the TESS mission, the runaway star PHL 346 = HN Aqr. The star, previously known as a singly-periodic pulsator, has at least 34 oscillation modes excited, 12 of those in the g-mode domain and 22 p modes. Analysis of archival data implies that the amplitude and frequency of the dominant mode and the stellar radial velocity were variable over time. A binary nature would be inconsistent with the inferred ejection velocity from the Galactic disc of 420 km/s, which is too large to be survivable by a runaway binary system. A kinematic analysis of the star results in an age constraint (23 +- 1 Myr) that can be imposed on asteroseismic modelling and that can be used to remove degeneracies in the modelling process. Our attempts to match the excitation of the observed frequency spectrum resulted in pulsation models that were too young. Hence, asteroseismic studies of runaway pulsators can become vital not only in tracing the evolutionary history of such objects, but to understand the interior structure of massive stars in general. TESS is now opening up these stars for detailed asteroseismic investigation.Comment: accepted for ApJ
    • …
    corecore