262 research outputs found

    On the potential of the EChO mission to characterise gas giant atmospheres

    Full text link
    Space telescopes such as EChO (Exoplanet Characterisation Observatory) and JWST (James Webb Space Telescope) will be important for the future study of extrasolar planet atmospheres. Both of these missions are capable of performing high sensitivity spectroscopic measurements at moderate resolutions in the visible and infrared, which will allow the characterisation of atmospheric properties using primary and secondary transit spectroscopy. We use the NEMESIS radiative transfer and retrieval tool (Irwin et al. 2008, Lee et al. 2012) to explore the potential of the proposed EChO mission to solve the retrieval problem for a range of H2-He planets orbiting different stars. We find that EChO should be capable of retrieving temperature structure to ~200 K precision and detecting H2O, CO2 and CH4 from a single eclipse measurement for a hot Jupiter orbiting a Sun-like star and a hot Neptune orbiting an M star, also providing upper limits on CO and NH3. We provide a table of retrieval precisions for these quantities in each test case. We expect around 30 Jupiter-sized planets to be observable by EChO; hot Neptunes orbiting M dwarfs are rarer, but we anticipate observations of at least one similar planet.Comment: 22 pages, 30 figures, 4 tables. Accepted for publication in MNRA

    Exoplanet atmospheres with EChO: spectral retrievals using EChOSim

    Full text link
    We demonstrate the effectiveness of the Exoplanet Characterisation Observatory mission concept for constraining the atmospheric properties of hot and warm gas giants and super Earths. Synthetic primary and secondary transit spectra for a range of planets are passed through EChOSim (Waldmann & Pascale 2014) to obtain the expected level of noise for different observational scenarios; these are then used as inputs for the NEMESIS atmospheric retrieval code and the retrieved atmospheric properties (temperature structure, composition and cloud properties) compared with the known input values, following the method of Barstow et al. (2013a). To correctly retrieve the temperature structure and composition of the atmosphere to within 2 {\sigma}, we find that we require: a single transit or eclipse of a hot Jupiter orbiting a sun-like (G2) star at 35 pc to constrain the terminator and dayside atmospheres; 20 transits or eclipses of a warm Jupiter orbiting a similar star; 10 transits/eclipses of a hot Neptune orbiting an M dwarf at 6 pc; and 30 transits or eclipses of a GJ1214b-like planet.Comment: 13 pages, 15 figures, 1 table. Accepted by Experimental Astronomy. The final publication will shortly be available at Springer via http://dx.doi.org/10.1007/s10686-014-9397-

    From spectra to atmospheres: solving the underconstrained retrieval problem for exoplanets

    Get PDF
    Spectroscopic observations of transiting exoplanets have provided the first indications of their atmospheric structure and composition. Optimal estimation retrievals have been successfully applied to solar system planets to determine the temperature, composition and aerosol properties of their atmospheres, and have recently been applied to exoplanets. We show the effectiveness of the technique when combined with simulated observations from the proposed space telescope EChO, and also discuss the difficulty of constraining a complex system with sparse data and large uncertainties, using the super-Earth GJ 1214b as an exampl

    The Transit Spectra of Earth and Jupiter

    Full text link
    In recent years, a number of observations have been made of the transits of 'Hot Jupiters', such as HD 189733b, which have been modelled to derive atmospheric structure and composition. As measurement techniques improve, the transit spectra of 'Super-Earths' such as GJ 1214b are becoming better constrained, allowing model atmospheres to be fitted for this class of planet also. While it is not yet possible to constrain the atmospheric states of small planets such as the Earth or cold planets like Jupiter, this may become practical in the coming decades and if so, it is of interest to determine what we might infer from such measurements. Here we have constructed atmospheric models of the Solar System planets from 0.4 - 15.5 microns that are consistent with ground-based and satellite observations and from these calculate the primary transit and secondary eclipse spectra (with respect to the Sun and typical M-dwarfs) that would be observed by a 'remote observer', many light years away. From these spectra we test what current retrieval models might infer about their atmospheres and compare these with the 'ground truths' in order to assess: a) the inherent uncertainties in transit spectra observations; b) the relative merits of primary transit and secondary eclipse spectra; and c) the advantages of directly imaged spectra. We find that secondary eclipses would not give sufficient information, but that primary transits give much better determination. We find that a single transit of Jupiter in front of the Sun could potentially be used to determine temperature and stratospheric composition, but for the Earth the mean atmospheric composition could only be determined if it were orbiting an M-dwarf. For both planets we note that direct imaging with sufficient nulling of the light from the parent star provides the best method of determining the atmospheric properties of such planets

    Artificial Neural Network Predictions of Water Levels in a Gulf of Mexico Shallow Embayment

    Get PDF
    Tide tables are the method of choice for water level predictions in most coastal regions. However, for many locations along the coast of the Gulf of Mexico, tide tables do not meet United States National Ocean Service (NOS) standards. Wind forcing has been recognized as the main variable not included. The performance of the tide tables is particularly poor in shallow embayments. Recent research has shown that Artificial Neural Network (ANN) models including input variables such as previous water levels, tidal forecasts, wind speed, wind direction, wind forecasts and barometricpressure can greatly improve over the tide charts for locations including open coast and deep embayments. In this paper, the ANN modeling technique is applied to a shallow embayment, the station of Rockport, located near Corpus Christi, Texas. The ANN model performance is compared against the NOS tide charts and the persistence model for the years 1997 to 2001. The performance is assessed using NOS criteria including Central Frequency (CF of 15 cm), Maximum Duration of Positive Outliers (MDPO), and Maximum Duration of Negative Outliers (MDNO). Over the study period, the performances of the three models (tide table, persistence, ANN) are respectively CF’s of 85%, 95.8% and 96.9%, MDPOs of 16, 14 and 5.9 hours, and MDNOs of 72.8 hours, 0.6 and 9.5 hours.Tablas de mareas son el método escogido generalmente para la predicción del nivel del agua en regiones costeras. Sin embargo, para muchas localidades en la costa del Golfo de México, las tablas de mareas no satisfacen las normas del Servicio Nacional Oceánico de los Estados Unidos (NOS, por sus siglas en inglés). La fuerza del viento ha sido reconocida como la principal variable no incluida. El rendimiento de las tablas de mareas es particularmente pobre en aguas poco profundas. Investigaciones recientes han mosrado que los modelos de redes de neuronas artificiales (ANN, por sus siglas en inglés) que incluyen variables de entrada como niveles previos de agua, previsiones de mareas, velocidad del viento, dirección del viento, predicción del viento, y presión atmosférica, pueden mejorar en gran medida los gráficos de mareas para localizaciones que incluyen mar abierto y aguas profundas. En este artículo, la técnica de modelación de ANN es aplicada a una estación de aguas poco profundas, la estación de Rockport, localizada cerca de Corpus Christi, Texas. El rendimiento del modelo ANN es comparado contra los gráficos de mareas NOS y el modelo de persistencia para los años 1007 a 2001. El rendimiento es medido usando los criterios NOS, que incluyen Frecuencia Central (FC de 15 cm), Máxima Duración de Puntos Atípicos Positivos (MNPO), y Máxima Duración de Puntos Atípicos Necagativos (MDNO). Sobre el período de estudio, el rendimiento de los tres modelos (tabla de mareas, persistencia, ANN) son, respectivamente, CF de 85%, 95.8% y 96.9%, para MDPO es 16, 14 y 5.9 horas, y para MDNO es de 72.8, 0.6 y 0.5 horas

    Computations of Combustion-Powered Actuation for Dynamic Stall Suppression

    Get PDF
    A computational framework for the simulation of dynamic stall suppression with combustion-powered actuation (COMPACT) is validated against wind tunnel experimental results on a VR-12 airfoil. COMPACT slots are located at 10% chord from the leading edge of the airfoil and directed tangentially along the suction-side surface. Helicopter rotor-relevant flow conditions are used in the study. A computationally efficient two-dimensional approach, based on unsteady Reynolds-averaged Navier-Stokes (RANS), is compared in detail against the baseline and the modified airfoil with COMPACT, using aerodynamic forces, pressure profiles, and flow-field data. The two-dimensional RANS approach predicts baseline static and dynamic stall very well. Most of the differences between the computational and experimental results are within two standard deviations of the experimental data. The current framework demonstrates an ability to predict COMPACT efficacy across the experimental dataset. Enhanced aerodynamic lift on the downstroke of the pitching cycle due to COMPACT is well predicted, and the cycleaveraged lift enhancement computed is within 3% of the test data. Differences with experimental data are discussed with a focus on three-dimensional features not included in the simulations and the limited computational model for COMPACT

    Combustion-Powered Actuation for Dynamic Stall Suppression - Simulations and Low-Mach Experiments

    Get PDF
    An investigation on dynamic-stall suppression capabilities of combustion-powered actuation (COMPACT) applied to a tabbed VR-12 airfoil is presented. In the first section, results from computational fluid dynamics (CFD) simulations carried out at Mach numbers from 0.3 to 0.5 are presented. Several geometric parameters are varied including the slot chordwise location and angle. Actuation pulse amplitude, frequency, and timing are also varied. The simulations suggest that cycle-averaged lift increases of approximately 4% and 8% with respect to the baseline airfoil are possible at Mach numbers of 0.4 and 0.3 for deep and near-deep dynamic-stall conditions. In the second section, static-stall results from low-speed wind-tunnel experiments are presented. Low-speed experiments and high-speed CFD suggest that slots oriented tangential to the airfoil surface produce stronger benefits than slots oriented normal to the chordline. Low-speed experiments confirm that chordwise slot locations suitable for Mach 0.3-0.4 stall suppression (based on CFD) will also be effective at lower Mach numbers

    Inflammatory Differences in Plaque Erosion and Rupture in Patients With ST‐Segment Elevation Myocardial Infarction

    Get PDF
    Background: Plaque erosion causes 30% of ST‐segment elevation myocardial infarctions, but the underlying cause is unknown. Inflammatory infiltrates are less abundant in erosion compared with rupture in autopsy studies. We hypothesized that erosion and rupture are associated with significant differences in intracoronary cytokines in vivo. Methods and Results: Forty ST‐segment elevation myocardial infarction patients with <6 hours of chest pain were classified as ruptured fibrous cap (RFC) or intact fibrous cap (IFC) using optical coherence tomography. Plasma samples from the infarct‐related artery and a peripheral artery were analyzed for expression of 102 cytokines using arrays; results were confirmed with ELISA. Thrombectomy samples were analyzed for differential mRNA expression using quantitative real‐time polymerase chain reaction. Twenty‐three lesions were classified as RFC (58%), 15 as IFC (38%), and 2 were undefined (4%). In addition, 12% (12 of 102) of cytokines were differentially expressed in both coronary and peripheral plasma. I‐TAC was preferentially expressed in RFC (significance analysis of microarrays adjusted P<0.001; ELISA IFC 10.2 versus RFC 10.8 log2 pg/mL; P=0.042). IFC was associated with preferential expression of epidermal growth factor (significance analysis of microarrays adjusted P<0.001; ELISA IFC 7.42 versus RFC 6.63 log2 pg/mL, P=0.036) and thrombospondin 1 (significance analysis of microarrays adjusted P=0.03; ELISA IFC 10.4 versus RFC 8.65 log2 ng/mL, P=0.0041). Thrombectomy mRNA showed elevated I‐TAC in RFC (P=0.0007) epidermal growth factor expression in IFC (P=0.0264) but no differences in expression of thrombospondin 1. Conclusions: These results demonstrate differential intracoronary cytokine expression in RFC and IFC. Elevated thrombospondin 1 and epidermal growth factor may play an etiological role in erosion
    corecore