2,375 research outputs found

    Doping nature of native defects in 1T-TiSe2

    Get PDF
    The transition metal dichalcogenide 1T-TiSe2 is a quasi two-dimensional layered material with a charge density wave (CDW) transition temperature of TCDW 200 K. Self-doping effects for crystals grown at different temperatures introduce structural defects, modify the temperature dependent resistivity and strongly perturbate the CDW phase. Here we study the structural and doping nature of such native defects combining scanning tunneling microscopy/spectroscopy and ab initio calculations. The dominant native single atom dopants we identify in our single crystals are intercalated Ti atoms, Se vacancies and Se substitutions by residual iodine and oxygen.Comment: 5 pages, 3 figure

    STM microscopy of the CDW in 1T-TiSe2 in the presence of single atom defects

    Get PDF
    We present a detailed low temperature scanning tunneling microscopy study of the commensurate charge density wave (CDW) in 1TT-TiSe2_2 in the presence of single atom defects. We find no significant modification of the CDW lattice in single crystals with native defects concentrations where some bulk probes already measure substantial reductions in the CDW phase transition signature. Systematic analysis of STM micrographs combined with density functional theory modelling of atomic defect patterns indicate that the observed CDW modulation lies in the Se surface layer. The defect patterns clearly show there are no 2HH-polytype inclusions in the CDW phase, as previously found at room temperature [Titov A.N. et al, Phys. Sol. State 53, 1073 (2011). They further provide an alternative explanation for the chiral Friedel oscillations recently reported in this compound [J. Ishioka et al., Phys. Rev. B 84, 245125, (2011)].Comment: 5 pages, 4 figure

    Memory, learning and language in autism spectrum disorder

    Get PDF
    Background and aims: The ‘dual-systems’ model of language acquisition has been used by Ullman and colleagues to explain patterns of strength and weakness in the language of higher-functioning people with autism spectrum disorder (ASD). Specifically, intact declarative/explicit learning is argued to compensate for a deficit in non-declarative/implicit procedural learning, constituting an example of the so-called ‘see-saw’ effect. Ullman and Pullman (2015) extended their argument concerning a see-saw effect on language in ASD to cover other perceived anomalies of behaviour, including impaired acquisition of social skills. The aim of this paper is to present a critique of Ullman and colleagues’ claims, and to propose an alternative model of links between memory systems and language in ASD. Main contribution: We argue that a 4-systems model of learning, in which intact semantic and procedural memory are used to compensate for weaknesses in episodic memory and perceptual learning, can better explain patterns of language ability across the autistic spectrum. We also argue that attempts to generalise the ‘impaired implicit learning/spared declarative learning’ theory to other behaviours in ASD are unsustainable. Conclusions: Clinically significant language impairments in ASD are under-researched, despite their impact on everyday functioning and quality of life. The relative paucity of research findings in this area lays it open to speculative interpretation which may be misleading. Implications: More research is need into links between memory/learning systems and language impairments across the spectrum. Improved understanding should inform therapeutic intervention, and contribute to investigation of the causes of language impairment in ASD with potential implications for prevention

    Soliton effects in dangling-bond wires on Si(001)

    Full text link
    Dangling bond wires on Si(001) are prototypical one dimensional wires, which are expected to show polaronic and solitonic effects. We present electronic structure calculations, using the tight binding model, of solitons in dangling-bond wires, and demonstrate that these defects are stable in even-length wires, although approximately 0.1 eV higher in energy than a perfect wire. We also note that in contrast to conjugated polymer systems, there are two types of soliton and that the type of soliton has strong effects on the energetics of the bandgap edges, with formation of intra-gap states between 0.1 eV and 0.2 eV from the band edges. These intra-gap states are localised on the atoms comprising the soliton.Comment: 6 pages, 3 figures, 3 tables, submitted to Phys. Rev.

    ALMA Observations of the Young Substellar Binary System 2M1207

    Get PDF
    We present ALMA observations of the 2M1207 system, a young binary made of a brown dwarf with a planetary-mass companion at a projected separation of about 40 au. We detect emission from dust continuum at 0.89 mm and from the J=3−2J = 3 - 2 rotational transition of CO from a very compact disk around the young brown dwarf. The small radius found for this brown dwarf disk may be due to truncation from the tidal interaction with the planetary-mass companion. Under the assumption of optically thin dust emission, we estimated a dust mass of 0.1 M⊕M_{\oplus} for the 2M1207A disk, and a 3σ\sigma upper limit of ∼1 MMoon\sim 1~M_{\rm{Moon}} for dust surrounding 2M1207b, which is the tightest upper limit obtained so far for the mass of dust particles surrounding a young planetary-mass companion. We discuss the impact of this and other non-detections of young planetary-mass companions for models of planet formation, which predict the presence of circum-planetary material surrounding these objects.Comment: 10 pages, 6 figures, accepted for publication in A

    Lattice Heavy Quark Effective Theory and the Isgur-Wise function

    Get PDF
    We compute the Isgur-Wise function using heavy quark effective theory formulated on the lattice. The non-relativistic kinetic energy term of the heavy quark is included to the action as well as terms remaining in the infinite quark mass limit. The classical velocity of the heavy quark is renormalized on the lattice and we determine the renormalized velocity non-perturbatively using the energy-momentum dispersion relation. The slope parameter of the Isgur-Wise function at zero recoil is obtained at β=6.0\beta=6.0 on a 243×4824^3\times 48 lattice for three values of mQm_{Q}.Comment: 14 pages of A4 format and 8 figures in one uuencoded postscript fil

    Obliquity Constraints on an Extrasolar Planetary-Mass Companion

    Get PDF
    We place the first constraints on the obliquity of a planetary-mass companion outside of the solar system. Our target is the directly imaged system 2MASS J01225093–2439505 (2M0122), which consists of a 120 Myr 0.4 M⊙ star hosting a 12–27 M_J companion at 50 au. We constrain all three of the system's angular-momentum vectors: how the companion spin axis, the stellar spin axis, and the orbit normal are inclined relative to our line of sight. To accomplish this, we measure projected rotation rates (v sin i) for both the star and the companion using new near-infrared high-resolution spectra with NIRSPEC at Keck Observatory. We combine these with a new stellar photometric rotation period from TESS and a published companion rotation period from Hubble Space Telescope to obtain spin-axis inclinations for both objects. We also fitted multiple epochs of astrometry, including a new observation with NIRC2/Keck, to measure 2M0122b's orbital inclination. The three line-of-sight inclinations place limits on the true de-projected companion obliquity and stellar obliquity. We find that while the stellar obliquity marginally prefers alignment, the companion obliquity tentatively favors misalignment. We evaluate possible origin scenarios. While collisions, secular spin–orbit resonances, and Kozai–Lidov oscillations are unlikely, formation by gravitational instability in a gravito-turbulent disk—the scenario favored for brown dwarf companions to stars—appears promising
    • …
    corecore