8,304 research outputs found

    Optimization and performance of Space Station Freedom solar cells

    Get PDF
    High efficiency, large area and low cost solar cells are the drivers for Space Station solar array designs. The manufacturing throughput, process complexity, yield of the cells, and array manufacturing technique determine the economics of the solar array design. The cell efficiency optimization of large area (8 x 8 m), dielectric wrapthrough contact solar cells are described. The results of the optimization are reported and the solar cell performance of limited production runs is reported

    Gallium arsenide 55Fe X-ray-photovoltaic battery

    Get PDF
    The effects of temperature on the key parameters of a prototype GaAs 55Fe radioisotope X-ray microbattery were studied over the temperature range -20 °C to 70 °C. A p-i-n GaAs structure was used to collect the photons from a 254 Bq 55Fe radioisotope X-ray source. Experimental results showed that the open circuit voltage and the short circuit current decreased with increased temperature. The maximum output power and the conversion efficiency of the device decreased at higher temperatures. For the reported microbattery, the highest maximum output power (1 pW, corresponding to 0.4 μW/Ci) was observed at -20 °C. A conversion efficiency of 9% was measured at -20 °C

    The First Detailed X-ray Observations of High-Redshift, Optically-Selected Clusters: XMM-Newton Results for Cl 1324+3011 at z = 0.76 and Cl 1604+4304 at z = 0.90

    Full text link
    We present the first detailed X-ray observations of optically-selected clusters at high redshift. Two clusters, Cl 1324+3011 at z = 0.76 and Cl 1604+4304 at z = 0.90, were observed with XMM-Newton. The optical center of each cluster is coincident with an extended X-ray source whose emission is detected out to a radius of 0.5 Mpc. The emission from each cluster appears reasonably circular, with some indication of asymmetries and more complex morphologies. Similarly to other optically-selected clusters at redshifts of z > 0.4, both clusters are modest X-ray emitters with bolometric luminosities of only Lx = 1.4 - 2.0 x 10^(44) erg/s. We measure gas temperatures of T = 2.88 (+0.71/-0.49) keV for Cl 1324+3011 and 2.51 (+1.05/-0.69) keV for Cl 1604+4304. The X-ray properties of both clusters are consistent with the high-redshift Lx-T relation measured from X-ray-selected samples at z > 0.5. However, based on the local relations, their X-ray luminosities and temperatures are low for their measured velocity dispersions (sigma). The clusters are cooler by a factor of 2 - 9 compared to the local sigma-T relation. We briefly discuss the possible explanations for these results.Comment: 14 pages, 4 figures; accepted for publication in Astrophysical Journal Letters; version with full resolution figures available at http://bubba.ucdavis.edu/~lubin/xmm.pd

    The millimetre variability of M81* -- Multi-epoch dual frequency mm-observations of the nucleus of M81

    Get PDF
    There are still many open questions as to the physical mechanisms at work in Low Luminosity AGN that accrete in the extreme sub-Eddington regime. Simultaneous multi-wavelength studies have been very successful in constraining the properties of SgrA*, the extremely sub-Eddington black hole at the centre of our Milky Way. M81*, the nucleus of the nearby spiral galaxy M81, is an ideal source to extend the insights obtained on SgrA* toward higher luminosity AGN. Here we present observations at 3 and 1 mm that were obtained within the framework of a coordinated,multi-wavelength campaign on M81*. The continuum emission from M81* was observed during three epochs with the IRAM Plateau de Bure Interferometer simultaneously at wavelengths of 3 and 1 mm. We present the first flux measurements of M81* at wavelengths around 1 mm. We find that M81* is a continuously variable source with the higher variability observed at the shorter wavelength. Also, the variability at 3 and 1 mm appears to be correlated. Like SgrA*, M81* appears to display the strongest flux density and variability in the mm-to-submm regime. There remains still some ambiguity concerning the exact location of the turnover frequency from optically thick to optically thin emission. The observed variability time scales point to an upper size limit of the emitting region of the order 25 Schwarzschild radii. The data show that M81* is indeed a system with very similar physical properties to SgrA* and an ideal bridge toward high luminosity AGN. The data obtained clearly demonstrate the usefulness and, above all, the necessity of simultaneous multi-wavelength observations of LLAGN.Comment: accepted for publication in A&

    The Mass Assembly History of Spheroidal Galaxies: Did Newly-Formed Systems Arise Via Major Mergers?

    Get PDF
    We examine the properties of a morphologically-selected sample of 0.4<z<1.0 spheroidal galaxies in the GOODS fields in order to ascertain whether their increase in abundance with time arises primarily from mergers. To address this question we determine scaling relations between the dynamical mass determined from stellar velocity dispersions, and the stellar mass determined from optical and infrared photometry. We exploit these relations across the larger sample for which we have stellar masses in order to construct the first statistically robust estimate of the evolving dynamical mass function over 0<z<1. The trends observed match those seen in the stellar mass functions of Bundy et al. 2005 regarding the top-down growth in the abundance of spheroidal galaxies. By referencing our dynamical masses to the halo virial mass we compare the growth rate in the abundance of spheroidals to that predicted by the assembly of dark matter halos. Our comparisons demonstrate that major mergers do not fully account for the appearance of new spheroidals since z~1 and that additional mechanisms, such as morphological transformations, are required to drive the observed evolution.Comment: Accepted to ApJL; New version corrects the Millennium merger predictions--further details at http://www.astro.utoronto.ca/~bundy/millennium

    B3 0003+387: AGN Marked Large-Scale Structure at z=1.47?

    Full text link
    We present evidence for a significant overdensity of red galaxies, as much as a factor of 14 over comparable field samples, in the field of the z=1.47 radio galaxy B3 0003+387. The colors and luminosities of the brightest red galaxies are consistent with their being at z>0.8. The radio galaxy and one of the red galaxies are separated by 5" and show some evidence of a possible interaction. However, the red galaxies do not show any strong clustering around the radio galaxy nor around any of the brighter red galaxies. The data suggest that we are looking at a wall or sheet of galaxies, possibly associated with the radio galaxy at z=1.47. Spectroscopic redshifts of these red galaxies will be necessary to confirm this large-scale structure.Comment: 19 pages, 7 figures, LaTeX2e/AASTeX v5.0.2. The full photometric catalog is included as a separate deluxetable file. To appear in the Astronomical Journal (~Nov 00

    Age, Metallicity and Star Formation History of Cluster Galaxies at z~0.3 F

    Get PDF
    We investigate the color-magnitude distribution in the rich cluster AC 118 at z=0.31. The sample is selected by the photometric redshift technique, allowing to study a wide range of properties of stellar populations, and is complete in the K-band, allowing to study these properties up to a given galaxy mass. We use galaxy templates based on population synthesis models to translate the physical properties of the stellar populations - formation epoch, time-scale of star formation, and metallicity - into observed magnitudes and colors. In this way we show that a sharp luminosity-metallicity relation is inferred without any assumption on the galaxy formation scenario (either monolithic or hierarchical). Our data exclude significant differences in star formation histories along the color-magnitude relation, and therefore confirm a pure metallicity interpretation for its origin, with an early (z~5) formation epoch for the bulk of stellar populations. The dispersion in the color-magnitude diagram implies that fainter galaxies in our sample (K~18) ceased to form stars as late as z~0.5, in agreement with the picture that these galaxies were recently accreted into the cluster environment. The trend with redshift of the total stellar mass shows that half of the luminous mass in AC 118 was already formed at $z~2, but also that 20% of the stars formed at z<1.Comment: 16 pages, 10 figures. ApJ in pres

    Signatures of Interstellar-Intracluster Medium Interactions: Spiral Galaxy Rotation Curves in Abell 2029

    Get PDF
    We investigate the rich cluster Abell 2029 (z~0.08) using optical imaging and long-slit spectral observations of 52 disk galaxies distributed throughout the cluster field. No strong emission-line galaxies are present within ~400 kpc of the cluster center, a region largely dominated by the similarly-shaped X-ray and low surface brightness optical envelopes centered on the giant cD galaxy. However, two-thirds of the galaxies observed outside the cluster core exhibit line emission. H-alpha rotation curves of 14 cluster members are used in conjunction with a deep I band image to study the environmental dependence of the Tully-Fisher relation. The Tully-Fisher zero-point of Abell 2029 matches that of clusters at lower redshifts, although we do observe a relatively larger scatter about the Tully-Fisher relation. We do not observe any systematic variation in the data with projected distance to the cluster center: we see no environmental dependence of Tully-Fisher residuals, R-I color, H-alpha equivalent width, and the shape and extent of the rotation curves.Comment: 22 pages, 6 figures, 3 tables; to appear in the August 2000 Astronomical Journa

    Approaching the event horizon: 1.3mm VLBI of SgrA*

    Full text link
    Advances in VLBI instrumentation now allow wideband recording that significantly increases the sensitivity of short wavelength VLBI observations. Observations of the super-massive black hole candidate at the center of the Milky Way, SgrA*, with short wavelength VLBI reduces the scattering effects of the intervening interstellar medium, allowing observations with angular resolution comparable to the apparent size of the event horizon of the putative black hole. Observations in April 2007 at a wavelength of 1.3mm on a three station VLBI array have now confirmed structure in SgrA* on scales of just a few Schwarzschild radii. When modeled as a circular Gaussian, the fitted diameter of SgrA* is 37 micro arcsec (+16,-10; 3-sigma), which is smaller than the expected apparent size of the event horizon of the Galactic Center black hole. These observations demonstrate that mm/sub-mm VLBI is poised to open a new window onto the study of black hole physics via high angular resolution observations of the Galactic Center.Comment: 6 pages, 4 figures, Proceedings for "The Universe under the Microscope" (AHAR 2008), held in Bad Honnef (Germany) in April 2008, to be published in Journal of Physics: Conference Series by Institute of Physics Publishing, R. Schoedel, A. Eckart, S. Pfalzner, and E. Ros (eds.
    • …
    corecore