1,154 research outputs found

    Iron deficiency chlorosis in sorghum

    Get PDF
    Call number: LD2668 .T4 1985 B68Master of Scienc

    Telomere length profiles in primary human peritoneal mesothelial cells are consistent with senescence

    Get PDF
    Mesothelial cell (MC) senescence contributes to malignancy and tissue fibrosis. The role of telomere erosion in MC senescence remains controversial, with evidence for both telomere-dependent and telomere-independent mechanisms reported. Single telomere length analysis revealed considerable telomere length heterogeneity in freshly isolated human peritoneal MCs, reflecting a heterogeneous proliferative history and providing high-resolution evidence for telomere-dependent senescence. By contrast the attenuated replicative lifespan, lack of telomere erosion and induction of p16 expression in in vitro-aged cells was consistent with stress-induced senescence. Given the potential pathophysiological impact of senescence in mesothelial tissues, high-resolution MC telomere length analysis may provide clinically useful information

    Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression.

    Get PDF
    BACKGROUND: Selective maintenance of genomic epigenetic imprints during pre-implantation development is required for parental origin-specific expression of imprinted genes. The Kruppel-like zinc finger protein ZFP57 acts as a factor necessary for maintaining the DNA methylation memory at multiple imprinting control regions in early mouse embryos and embryonic stem (ES) cells. Maternal-zygotic deletion of ZFP57 in mice presents a highly penetrant phenotype with no animals surviving to birth. Additionally, several cases of human transient neonatal diabetes are associated with somatic mutations in the ZFP57 coding sequence. RESULTS: Here, we comprehensively map sequence-specific ZFP57 binding sites in an allele-specific manner using hybrid ES cell lines from reciprocal crosses between C57BL/6J and Cast/EiJ mice, assigning allele specificity to approximately two-thirds of all binding sites. While half of these are biallelic and include endogenous retrovirus (ERV) targets, the rest show monoallelic binding based either on parental origin or on genetic background of the allele. Parental-origin allele-specific binding is methylation-dependent and maps only to imprinting control differentially methylated regions (DMRs) established in the germline. We identify a novel imprinted gene, Fkbp6, which has a critical function in mouse male germ cell development. Genetic background-specific sequence differences also influence ZFP57 binding, as genetic variation that disrupts the consensus binding motif and its methylation is often associated with monoallelic expression of neighboring genes. CONCLUSIONS: The work described here uncovers further roles for ZFP57-mediated regulation of genomic imprinting and identifies a novel mechanism for genetically determined monoallelic gene expression.The authors acknowledge support from the Wellcome Trust, BBSRC, and EU FP7 Initial Training Networks INGENIUM (Marie-Curie Action 290123) and EpiHealthNet (Marie Curie Action 317146).This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13059-015-0672-

    An Assessment of Blood Vessel Remodeling of Nanofibrous Poly(ε-Caprolactone) Vascular Grafts in a Rat Animal Model

    Get PDF
    The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have changed after 6 months, at which time the majority of cells was discovered in the inner layer where the regeneration of the vessel wall was found to have occurred. Six months following implantation, the endothelialization of the graft lumen was complete, and no vasa vasorum were found to be present. Newly formed tissue resembling native elastic arteries with concentric layers composed of smooth muscle cells, collagen, and elastin was found in the implanted polycaprolactone-based grafts. Moreover, the inner layer of the graft was seen to have developed structural similarities to the regular aortic wall. The grafts appeared to be well tolerated, and no severe adverse reaction was recorded with the exception of one case of cartilaginous metaplasia close to the junctional suture

    Compatibilidade micelial e agressividade de isolados de Sclerotinia sclerotiorum do Brasil e dos Estados Unidos

    Get PDF
    The objective of this work was to evaluate the genetic diversity among Sclerotinia sclerotiorum isolates from Brazil and the USA, assess their aggressiveness variability, and verify the existence of an isolate-cultivar interaction. Isolate variability was determined by mycelial compatibility grouping (MCG), and isolate aggressiveness by cut‑stem inoculations of soybean cultivars. Two experiments for MCGs and two for aggressiveness were conducted with two sets of isolates. The first set included nine isolates from the same soybean field in Brazil and nine from the Midwest region of the USA. The second set included 16 isolates from several regions of Brazil and one from the USA. In the first set, 18 isolates formed 12 different MCGs. In the second set, 81% of the isolates from Brazil grouped into a single MCG. No common MCGs were observed among isolates from Brazil and the USA. The isolates showed aggressiveness differences in the first set, but not in the second. Although aggressiveness differed in the first set, soybean cultivars and isolates did not interact significantly. Cultivar rank remained the same, regardless of the genetic diversity, aggressiveness difference, and region or country of origin of the isolate. Results from screening of soybean cultivars, performed by the cut‑stem method in the USA, can be used as reference for researchers in Brazil.O objetivo deste trabalho foi avaliar a diversidade genética entre isolados de Sclerotinia sclerotiorum do Brasil e dos EUA, determinar sua variabilidade quanto à agressividade e verificar a existência de interação isolado-cultivar. A variabilidade dos isolados foi determinada por agrupamento de compatibilidade micelial (ACM), e a agressividade dos isolados, por meio de inoculações, com corte da haste, em cultivares de soja. Dois experimentos de ACM e dois de agressividade foram realizados, com dois conjuntos de isolados. O primeiro conjunto incluiu nove isolados, do mesmo campo de soja no Brasil, e nove da região Meio‑Oeste dos EUA. O segundo conjunto incluiu 16 isolados de várias regiões do Brasil e um dos EUA. No primeiro conjunto, 18 isolados formaram 12 ACMs diferentes. No segundo conjunto, 81% dos isolados do Brasil formaram um único ACM. Nenhum ACM comum foi observado entre os isolados do Brasil e dos EUA. Os isolados apresentaram diferenças quanto à agressividade no primeiro conjunto de isolados, mas não no segundo. Embora a agressividade tenha diferido no primeiro conjunto, as cultivares de soja e os isolados não interagiram significativamente. A classificação das cultivares permaneceu a mesma, independentemente da diversidade genética, da diferença quanto à agressividade e da região ou país de origem do isolado. Resultados da seleção de cultivares de soja, realizada pelo método de inoculação de corte da haste nos EUA, podem ser utilizados como referência para pesquisadores no Brasil

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore