4,528 research outputs found

    Magnetic anisotropy terms in [110] MBE grown REFe2 films involving the strain term ???

    No full text
    The magnetic anisotropy parameters in [110] MBE grown films of REFe2 compounds are not the same as those in the bulk. This is due to the presence of a shear strain εxy, frozen in during crystal growth. In this paper, calculated magnetic anisotropy parameters for [110] MBE grown REFe2 films, that directly involve the shear strain εxy, are presented and discussed. In addition to the usual first order Callen and Callen term K˜'2, there are nine second order terms six of which involve cross terms between εxy and the cubic crystal field terms B4 and B6. Two of the second order cross terms are identified as being important: K˜"242(T) and K˜"262(T). Of these, the rank-two term K˜"242(T) dominates over a large temperature range. It has the same angular dependence as the first order term K˜'2, but with a more rapid temperature dependence. The correction at T = 0K for TbFe2, DyFe2, HoFe2, ErFe2, and TmFe2, amounts to ~+9.2%, -13.9%, -11.6%, +22.7%, and 27.1%, respectively. Similar comments are made concerning the rank-four K˜"264(T) term

    Magnetic switching modes for exchange spring systems ErFe2/YFe2/DyFe2/YFe2 with competing anisotropies

    No full text
    The magnetization reversal processes of ½10nm ErFe2=nYFe2=4nm DyFe2=nYFe2" multilayer films with a (110) growth axis and a variable YFe2 layer thickness n are investigated. The magnetically soft YFe2 compound acts as a separator between the hard rare earth (RE) ErFe2 and DyFe2 compounds, each of them bearing different temperature dependent magnetic anisotropy properties. Magnetic measurements of a system with n ¼ 20nm reveal the existence of three switching modes: an independent switching mode at low temperatures, an ErFe2 spin flop switching mode at medium high temperatures, and an YFe2 dominated switching mode at high temperatures. The measurements are in qualitative agreement with the findings of micromagnetic simulations which are used to illustrate the switching modes. Further simulations for a varied YFe2 layer thickness n ranging from 2 to 40nm are carried out. Quantitative criteria are defined to classify the reversal behavior, and the resultant switching modes are laid out in a map with regard to n and the temperature T. A new coupled switching mode emerges above a threshold temperature for samples with thin YFe2 separation layers as a consequence of the exchange coupling between the magnetically hard ErFe2 and DyFe2 layers. It reflects the increasing competition of the two conflicting anisotropies to dominate the magnetic switching states of both RE compounds under decreasing n

    Breakdown of disordered media by surface loads

    Full text link
    We model an interface layer connecting two parts of a solid body by N parallel elastic springs connecting two rigid blocks. We load the system by a shear force acting on the top side. The springs have equal stiffness but are ruptured randomly when the load reaches a critical value. For the considered system, we calculate the shear modulus, G, as a function of the order parameter, \phi, describing the state of damage, and also the ``spalled'' material (burst) size distribution. In particular, we evaluate the relation between the damage parameter and the applied force and explore the behaviour in the vicinity of material breakdown. Using this simple model for material breakdown, we show that damage, caused by applied shear forces, is analogous to a first-order phase transition. The scaling behaviour of G with \phi is explored analytically and numerically, close to \phi=0 and \phi=1 and in the vicinity of \phi_c, when the shear load is close but below the threshold force that causes material breakdown. Our model calculation represents a first approximation of a system subject to wear induced loads.Comment: 15 pages, 7 figure

    A statistical mechanics description of environmental variability in metabolic networks

    Get PDF
    Many of the chemical reactions that take place within a living cell are irreversible. Due to evolutionary pressures, the number of allowable reactions within these systems are highly constrained and thus the resulting metabolic networks display considerable asymmetry. In this paper, we explore possible evolutionary factors pertaining to the reduced symmetry observed in these networks, and demonstrate the important role environmental variability plays in shaping their structural organization. Interpreting the returnability index as an equilibrium constant for a reaction network in equilibrium with a hypothetical reference system, enables us to quantify the extent to which a metabolic network is in disequilibrium. Further, by introducing a new directed centrality measure via an extension of the subgraph centrality metric to directed networks, we are able to characterise individual metabolites by their participation within metabolic pathways. To demonstrate these ideas, we study 116 metabolic networks of bacteria. In particular, we find that the equilibrium constant for the metabolic networks decreases significantly in-line with variability in bacterial habitats, supporting the view that environmental variability promotes disequilibrium within these biochemical reaction system

    Radiation Detection: Resistivity Responses in Functional Poly(Olefin Sulfone)/Carbon Nanotube Composites

    Get PDF
    Detection of gamma rays is shown using a non-scintillating organic-based sensor composed of poly(olefin sulfone)/carbon nanotube blends. Functionalization of the polymers can be performed after polymerization to tailor their structure with different pyrene and bismuth-containing moieties not accessible by copolymerization, and a systematic improvement in sensitivity is achieved in this way.National Science Foundation (U.S.) (DMR-0706408

    Evidence for the evolutionary steps leading to mecA-mediated ß-lactam resistance in staphylococci

    Get PDF
    The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA–an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics

    X-rays and Gamma-rays from Cataclysmic Variables: The example case of Intermediate Polar V1223 Sgr

    Full text link
    The accretion of matter onto intermediate polar White Dwarfs (IPWDs) seems to provide attractive conditions for acceleration of particles to high energies in a strongly magnetized turbulent region at the accretion disk inner radius. We consider possible acceleration of electrons and hadrons in such region and investigate their high energy radiation processes. It is concluded that accelerated electrons loose energy mainly on synchrotron process producing non-thermal X-ray emission. On the other hand, accelerated hadrons are convected onto the WD surface and interact with dense matter. As a result, high energy γ\gamma-rays from decay of neutral pions and secondary leptons from decay of charged pions appear. We show that GeV-TeV γ\gamma-rays can escape from the vicinity of the WD. Secondary leptons produce synchrotron radiation in the hard X-rays and soft γ\gamma-rays. As an example, we predict the X-ray and γ\gamma-ray emission from IPWD V1223 Sgr. Depending on the spectral index of injected particles, this high energy emission may be detected by the Fermi{\it Fermi}-LAT telescope and/or the future Cherenkov Telescope Array (CTA) observatory.Comment: 16 pages, 1 figure, accepted to MNRA

    Matrix converter open circuit behavior analysis

    Get PDF
    The matrix converter current recirculating path during an open circuit condition is given in detail with the aim of contributing more expert knowledge to a fault detection system for matrix converter. Simulation results were obtained demonstrating how current recirculates in the matrix converter and the clamp circuit during an open-circuit fault. Healthy output phase currents can be canceled to zero due to current recirculating via the clamp circuit. This result could contribute expert knowledge to a fault detection system to avoid false fault detection and diagnosis

    Synthesis and regioselective N- and O-alkylation of 3-alkyl-5-phenyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones and 2-phenyl-9-propyl-9H-purin-6(1H)-one with evaluation of antiviral and antitumor activities

    Get PDF
    3-Alkyl-5-phenyl-3H-[1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones were prepared by nitrosative cyclization of the appropriate 5,6-diamino-2-phenylpyrimidin-4(3H)-ones with nitrous acid and were subjected to regioselective alkylation with several alkylating agents in aprotic solvent at different temperature. Simultaneous 6-N- and 7-O-alkylation were observed and the regioselectivity varied remarkably with size and shape of the alkylating agents as well as with the reaction temperature. Similarly, N- and O-alkylation as well as selectivity was also observed in the case of 2-phenyl-9-propyl-9H-purin-6(1H)-one. Some of the synthesized compounds showed moderate antiviral and antitumor activities.</p
    • …
    corecore