744 research outputs found

    Influences of Display Design and Task Management Strategy on Situation Awareness, Performance, and Workload in Process Control Environments

    Get PDF
    Process control environments demand well informed high performing human monitors to maintain effectual control of multiple processes. Most research aims to satisfy this requirement through the evaluation of competing heuristic-based display design constructs. Contrary to that method, this study takes a novel approach by examining both factors internal and external to the human observer to identify where beneficial outcomes actually reside. External factors explore the underlying design construct attributes, while internal factors focus on the effect of operator task management strategy, age, and experience. Results from this study present several key findings relative to operator situation awareness, performance, and workload. Findings suggest the specific manner in which external information is presented and oriented on a process control room display is inconsequential toward situation awareness and performance. Further, operator preferred task management strategy has a profound effect on their performance and experienced workload, while exhibiting only a mild effect on situation awareness. In most cases, an Adaptive Attack strategy produces desirable results, while an Adaptive Avoidance does not. Interleaving and Multitasking fall between these two extremes. Lastly, findings indicate subject variables, age and experience have negative effects on overall situation awareness and system deviation prediction times

    Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit

    Get PDF
    BACKGROUND  Strategies to prevent Staphylococcus aureus infection in hospitals focus on patient-to-patient transmission. We used whole-genome sequencing to investigate the role of colonized patients as the source of new S. aureus acquisitions, and the reliability of identifying patient-to-patient transmission using the conventional approach of spa typing and overlapping patient stay. METHODS Over 14 months, all unselected patients admitted to an adult intensive care unit (ICU) were serially screened for S. aureus. All available isolates (n = 275) were spa typed and underwent whole-genome sequencing to investigate their relatedness at high resolution. RESULTS Staphylococcus aureus was carried by 185 of 1109 patients sampled within 24 hours of ICU admission (16.7%); 59 (5.3%) patients carried methicillin-resistant S. aureus (MRSA). Forty-four S. aureus (22 MRSA) acquisitions while on ICU were detected. Isolates were available for genetic analysis from 37 acquisitions. Whole-genome sequencing indicated that 7 of these 37 (18.9%) were transmissions from other colonized patients. Conventional methods (spa typing combined with overlapping patient stay) falsely identified 3 patient-to-patient transmissions (all MRSA) and failed to detect 2 acquisitions and 4 transmissions (2 MRSA). CONCLUSIONS Only a minority of S. aureus acquisitions can be explained by patient-to-patient transmission. Whole-genome sequencing provides the resolution to disprove transmission events indicated by conventional methods and also to reveal otherwise unsuspected transmission events. Whole-genome sequencing should replace conventional methods for detection of nosocomial S. aureus transmission

    Hyporheic Exchange and Water Chemistry of Two Arctic Tundra Streams of Contrasting Geomorphology

    Get PDF
    The North Slope of Alaska’s Brooks Range is underlain by continuous permafrost, but an active layer of thawed sediments develops at the tundra surface and beneath streambeds during the summer, facilitating hyporheic exchange. Our goal was to understand how active layer extent and stream geomorphology influence hyporheic exchange and nutrient chemistry. We studied two arctic tundra streams of contrasting geomorphology: a high-gradient, alluvial stream with riffle-pool sequences and a low-gradient, peat-bottomed stream with large deep pools connected by deep runs. Hyporheic exchange occurred to ~50 cm beneath the alluvial streambed and to only ~15 cm beneath the peat streambed. The thaw bulb was deeper than the hyporheic exchange zone in both stream types. The hyporheic zone was a net source of ammonium and soluble reactive phosphorus in both stream types. The hyporheic zone was a net source of nitrate in the alluvial stream, but a net nitrate sink in the peat stream. The mass flux of nutrients regenerated from the hyporheic zones in these two streams was a small portion of the surface water mass flux. Although small, hyporheic sources of regenerated nutrients help maintain the in-stream nutrient balance. If future warming in the arctic increases the depth of the thaw bulb, it may not increase the vertical extent of hyporheic exchange. The greater impacts on annual contributions of hyporheic regeneration are likely to be due to longer thawed seasons, increased sediment temperatures or changes in geomorphology

    Influence of Morphology and Permafrost Dynamics on Hyporheic Exchange in Arctic Headwater Streams under Warming Climate Conditions

    Get PDF
    We investigated surface-subsurface (hyporheic) exchange in two morphologically distinct arctic headwater streams experiencing warming (thawing) sub-channel conditions. Empirically parameterized and calibrated groundwater flow models were used to assess the influence of sub-channel thaw on hyporheic exchange. Average thaw depths were at least two-fold greater under the higher-energy, alluvial stream than under the lowenergy, peat-lined stream. Alluvial hyporheic exchange had shorter residence times and longer flowpaths that occurred across greater portions of the thawed sediments. For both reaches, the morphologic (longitudinal bed topography) and hydraulic conditions (surface and groundwater flow properties) set the potential for hyporheic flow. Simulations of deeper thaw, as predicted under a warming arctic climate, only influence hyporheic exchange until a threshold depth. This depth is primarily determined by the hydraulic head gradients imposed by the stream morphology. Therefore, arctic hyporheic exchange extent is likely to be independent of greater sub-stream thaw depths

    Getters for improved technetium containment in cementitious waste forms.

    Get PDF
    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This work focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon entering the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ∼0.08wt% of the total waste form mass. The observed diffusion (Dobs) of Tc decreased from 4.6±0.2×10-12cm2/s for Cast Stone that did not contain a getter to 5.4±0.4×10-13cm2/s for KMS-2 containing Cast Stone. It was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc Dobs when using the KMS-2

    Evaluation of the Effect of Hydrated Lime on the Scavenging of Feral Swine (\u3ci\u3eSus Scrofa\u3c/i\u3e) Carcasses and Implications for Managing Carcass-Based Transmission of African Swine Fever Virus

    Get PDF
    African swine fever (ASF) is a devastating hemorrhagic disease marked by extensive morbidity and mortality in infected swine. The recent global movement of African swine fever virus (ASFV) in domestic and wild swine (Sus scrofa) populations has initiated preparedness and response planning activities within many ASF-free countries. Within the US, feral swine are of utmost concern because they are susceptible to infection, are wide-spread, and are known to interact with domestic swine populations. African swine fever virus is particularly hardy and can remain viable in contaminated carcasses for weeks to months; therefore, carcass-based transmission plays an important role in the epidemiology of ASF. Proper disposal of ASF-infected carcasses has been demonstrated to be paramount to curbing an ASF outbreak in wild boar in Europe; preparedness efforts in the US anticipate carcass management being an essential component of control if an introduction were to occur. Due to environmental conditions, geographic features, or limited personnel, immediately removing every carcass from the landscape may not be viable. Hydrated lime converts to calcium carbonate, forming a sterile crust that may be used to minimize pathogen amplification. Any disturbance by scavenging animals to the sterile crust would nullify the effect of the hydrated lime; therefore, this pilot project aimed to evaluate the behavior of scavenging animals relative to hydrated lime-covered feral swine carcasses on the landscape. At two of the three study sites, hydrated limetreated carcasses were scavenged less frequently compared to the control carcasses. Additionally, the median time to scavenging was 1 d and 6 d for control versus hydrated lime-treated carcasses, respectively. While results of this study are preliminary, hydrated lime may be used to deter carcass disruption via scavenging in the event that the carcass cannot be immediately removed from the landscape

    Structural Basis for a Neutralizing Antibody Response Elicited by a Recombinant Hantaan Virus Gn Immunogen

    Get PDF
    Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nn-ITN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)(4) spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nn-ITN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.Peer reviewe
    corecore