903 research outputs found

    The buckling of a swollen thin gel layer bound to a compliant substrate

    Get PDF
    Gels are used to design bilayered structures with high residual stresses. The swelling of a thin layer on a compliant substrate leads to compressive stresses. The post-buckling of this layer is investigated experimentally; the wavelengths and amplitudes of the resulting modes are measured. A simplified model with a self-avoiding rod on a Winkler foundation is in semi-quantitative agreement with experiments and reproduces the observed cusp-like folds.Comment: submitted to Journal of Applied Mechanic

    Anomalous density dependence of static friction in sand

    Full text link
    We measured experimentally the static friction force FsF_s on the surface of a glass rod immersed in dry sand. We observed that FsF_s is extremely sensitive to the closeness of packing of grains. A linear increase of the grain-density yields to an exponentially increasing friction force. We also report on a novel periodicity of FsF_s during gradual pulling out of the rod. Our observations demonstrate the central role of grain bridges and arches in the macroscopic properties of granular packings.Comment: plain tex, 6 pages, to appear in Phys.Rev.

    Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites

    Get PDF
    OBJECTIVE: Atherosclerosis develops near branches and bends of arteries that are exposed to low shear stress (mechanical drag). These sites are characterized by excessive endothelial cell (EC) proliferation and inflammation that promote lesion initiation. The transcription factor HIF1α (hypoxia-inducible factor 1α) is canonically activated by hypoxia and has a role in plaque neovascularization. We studied the influence of shear stress on HIF1α activation and the contribution of this noncanonical pathway to lesion initiation. APPROACH AND RESULTS: Quantitative polymerase chain reaction and en face staining revealed that HIF1α was expressed preferentially at low shear stress regions of porcine and murine arteries. Low shear stress induced HIF1α in cultured EC in the presence of atmospheric oxygen. The mechanism involves the transcription factor nuclear factor-κB that induced HIF1α transcripts and induction of the deubiquitinating enzyme Cezanne that stabilized HIF1α protein. Gene silencing revealed that HIF1α enhanced proliferation and inflammatory activation in EC exposed to low shear stress via induction of glycolysis enzymes. We validated this observation by imposing low shear stress in murine carotid arteries (partial ligation) that upregulated the expression of HIF1α, glycolysis enzymes, and inflammatory genes and enhanced EC proliferation. EC-specific genetic deletion of HIF1α in hypercholesterolemic apolipoprotein E-defecient mice reduced inflammation and endothelial proliferation in partially ligated arteries, indicating that HIF1α drives inflammation and vascular dysfunction at low shear stress regions. CONCLUSIONS: Mechanical low shear stress activates HIF1α at atheroprone regions of arteries via nuclear factor-κB and Cezanne. HIF1α promotes atherosclerosis initiation at these sites by inducing excessive EC proliferation and inflammation via the induction of glycolysis enzymes

    Generalized Interpolation Material Point Approach to High Melting Explosive with Cavities Under Shock

    Full text link
    Criterion for contacting is critically important for the Generalized Interpolation Material Point(GIMP) method. We present an improved criterion by adding a switching function. With the method dynamical response of high melting explosive(HMX) with cavities under shock is investigated. The physical model used in the present work is an elastic-to-plastic and thermal-dynamical model with Mie-Gr\"uneissen equation of state. We mainly concern the influence of various parameters, including the impacting velocity vv, cavity size RR, etc, to the dynamical and thermodynamical behaviors of the material. For the colliding of two bodies with a cavity in each, a secondary impacting is observed. Correspondingly, the separation distance DD of the two bodies has a maximum value DmaxD_{\max} in between the initial and second impacts. When the initial impacting velocity vv is not large enough, the cavity collapses in a nearly symmetric fashion, the maximum separation distance DmaxD_{\max} increases with vv. When the initial shock wave is strong enough to collapse the cavity asymmetrically along the shock direction, the variation of DmaxD_{\max} with vv does not show monotonic behavior. Our numerical results show clear indication that the existence of cavities in explosive helps the creation of ``hot spots''.Comment: Figs.2,4,7,11 in JPG format; Accepted for publication in J. Phys. D: Applied Physic
    corecore