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Abstract: A series of hypercoordinated monoorganotin dibromides formed by glycolic acid 

amides, [RSnBr2(OCH2C(O)NR’2)]2 (2a, R= Et, NR’2 = NMe2; 3a, R= n-Bu, NR’2 = NMe2; 4b, 

R= Ph, NR’2 = morpholin-4-yl), were obtained and investigated by X-ray analysis, multinuclear 

NMR spectroscopy in solutions (1H, 13C, 119Sn) and solid state (CP/MAS). It has been 

established that 2a, 3a and 4b in solid state are dimeric. For the solutions in coordinating 

solvents the slow monomer-dimer equilibrium has been observed. The structures of related 

solvated monomeric chlorides, RSnCl(DMSO)(OCH2C(O)NR’2), 5a•DMSO and 6a•DMSO, 

were also investigated by X-ray analysis. 

1. Introduction 

 Organic compounds of tin attract nowadays significant attention. There are several main 

subjects in organotin chemistry: the investigation of compounds with multiple bonds of Sn with 
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elements [1], hypercoordinated derivatives and synthesis of low valent Sn(II) compounds [2]. 

Organotin compounds have applications in fine organic synthesis (e.g. reagents for Stille cross-

coupling [3]) and in industry (catalysts for ROP [4]). They are being studied as potential 

pharmaceuticals (particularly due to the toxicities of polyorganotin compounds) [5], as the 

precursors for new materials [6] and as PVC stabilizers [7]. Substantial understanding of the 

chemistry of organotins comes from the studies of the complexes with an extended coordination 

sphere [8]. Interest in these derivatives includes also investigation of new structural features and 

dynamic behavior [9] or possible application of hypercoordinated Sn compounds as precursors 

for new unusual chemical reactions [10]. Whereas tri- and diorganotin(IV) complexes remain the 

most investigated among the series of hypercoordinated tin, monoorganotin(IV) complexes are 

very rare and have been studied mostly with monodentate electrondonating ligands [11]. Notable 

exceptions include “estertin” (β-carboalkoxyethyltins) compounds [12], stannatranes [13], 

stannocanes [14] and related compounds [15]. 

The interaction of monoorganotin trichlorides (RSnCl3) with O-TMS derivatives of α-

hydroxyamides resulting in the substitution of one chlorine atom with hydroxyamide residue  has 

been studied previously in our research group [16]. In continuation of these studies we report 

here the detailed investigation concerning hypercoordinated monoorganotin bromides. It should 

be noted that the bromine containing organotin compounds (with only one organic substituent) 

are very rare [17] and studies of these compounds in comparison with related chlorides are rather 

difficult. A number of corresponding hypercoordinated compounds, 2a, 3a, 4b were obtained by 

interactions of monoorganotin tribromides (RSnBr3) with O-TMS derivatives of amides of 

glycolic acid (1a-b). The structures of these compounds in solutions and in solid state have been 

studied. The structures of the related chloride adducts with DMSO, 5a*DMSO, 6a*DMSO and 

7b*DMSO were also studied in solid state and in solutions. 

2. Results and Discussion 

2.1. Synthesis 

To synthesize the desired compounds well proven earlier reaction for obtaining analogous 

chlorides was employed. The advantage of this methodology is simplicity of procedure and ease 

of isolation of target compounds. As a result of interaction of monoorganotin tribromides 

(RSnBr3; R = Et, n-Bu, Ph) with O-TMS derivatives of N,N-disubstituted amides of glycolic acid 

(1a-b) the products of substitution of one halogen atom with the glycolic amide residue were 

isolated in moderate yields (Scheme 1). Compounds 2a, 3a and 4b are new. It should be noted 



  

3 
 

that reaction of 1a with PhSnBr3 and 1b with EtSnBr3 or n-BuSnBr3 resulted in complex 

mixtures of tin compounds from which it was impossible to isolate the pure substances. Attempts 

to obtain analogous compounds interacting monoorganotin tribromides (RSnBr3; R = Et, n-Bu) 

with O-TMS derivatives of amides of lactic and mandelic acids were unsuccessful; in these cases 

complicated mixtures of unidentified compounds were formed, too.  

 

Scheme 1. Synthesis of bromide tin complexes 2a, 3a and 4b. 

Compounds 2a, 3a and 4b were isolated as white powders soluble in polar organic solvents 

(MeCN, DMSO). These substances are sensitive to the air moisture and should be stored in the 

inert atmosphere. 

The structures of compounds 2a, 3a, and 4b have been studied in solid state using X-ray 

analysis and 119Sn CP/MAS spectroscopy and in solutions by multinuclear NMR spectroscopy. 

2.2. NMR spectroscopy 

Whereas the structures of the compounds in solid state were established unambiguously with 

X-ray analysis, it was rather difficult to identify the nature of the species present in solutions. 

In 1H NMR spectra of the compounds 2a and 3a in the DMSO-d6 solutions recorded at 

25°C the signals are broad (Figure S1, Supporting Information) and 13C NMR spectra were not 

observed at this temperature. 119Sn NMR spectra showed two signals at -417.5, -427.4 ppm and -

425.7, -431.4 ppm for 2a and 3a, respectively. At 65°C in 1H NMR spectrum the peaks for 3a 

are resolved (Figure S1, Supporting Information), 13C NMR spectrum was recorded and there is 

only one signal at -427.9 ppm for 119Sn NMR spectrum, albeit broad (Figure S2, Supporting 

Information). 

We believe, that the data obtained indicate the dynamic processes in solution for these 

bromides. One can assume the equilibrium between dimer (D), which also exists in the solid 
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state (see below) and monomeric adduct (M) with coordinated DMSO (Scheme 2). In both cases 

tin atom is hexacoordinated [18]. 

 

Scheme 2. Dimer (D) – monomer (M) equilibrium of tin complexes in DMSO solutions. 

The chemical shifts in NMR spectra for 2a, 3a and 4b in solution are typical for 

hexacoordinated tin atoms (δ = (-417) - (-496) ppm) [18, 19]. The tin - proton spin-spin coupling 

constants (3
J119Sn-H 87-93 Hz in Sn-OCH2 fragment and 3

J119Sn-H 130-132 Hz in Sn-Alk(Ar) 

fragment) are typical for hypercoordinated tin halide compounds [10, 11, 16]. The tin – carbon 

coupling constants are observed only in the case of 4b (see Experimental part). A small increase 

in values in compounds under investigation has been observed in comparison with the 

fourcoordinated tin compounds. 

Unfortunately, we failed to obtain for the compounds 2a, 3a and 4b from DMSO solutions 

crystals, suitable for X-ray analysis. Nevertheless, the described earlier DMSO adducts of the 

related chlorides 5a and 6a (Scheme 3) were studied by X-ray analysis (see below). It is 

noteworthy that the monomer-dimer equilibrium in solution is shifted toward monomer (M) in 

case of chlorides 5a, 6a, 7b [10]; this has been confirmed by 1H, 13C and 119Sn NMR spectra 

(Scheme 4).  

 

Scheme 3. The structures of chlorides 5a, 6a and 7b. 
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Scheme 4. Solvolysis of tin chlorides 5a, 6a and 7b in DMSO solutions. 

In 119Sn CP/MAS NMR [19] spectrum of 4b there is only one isotropic signal at δ = –503 

ppm, whereas in DMSO solution there are two peaks at δ = -489.7 (broad) and -494.7 ppm. 

Chlorides 5a and 6a (Scheme 3) in the solid state gave 119Sn chemical shifts at δ = -316 and -311 

ppm, respectively. For the phenyltin compound 7b the signal in 119Sn CP/MAS NMR spectrum 

was observed at δ = -426 ppm. 

Of particular interest is comparison of 119Sn NMR data for bromides (2-3a, 4b) and 

chlorides (5-6a, 7b) in solutions and solid state (Table 1). 

Table 1 

119Sn NMR data for 2a, 3a, 4b, 5a, 6a and 7b in DMSO-d6 solutions and solid state. 

Compound 

DMSO-d6 solutions Solid state 

δ 119Sn 
ppm[a] 

Monomer(M)/ 
Dimer(D)[b] 

δ 119Sn 
ppm[a] 

Monomer(M)/ 
Dimer(D)[b] 

2a 
-427;      
-417 

equilibrium 
(M)/(D) 

— — 

3a 
-426;      
-431 

equilibrium 
(M)/(D) 

— — 

4b 
-489(br.); 

-495 
equilibrium 

(M)/(D) 
-503 (D) 

5a -376 (M) -316 (D) 

6a -377 (M) -311 (D) 

7b -437 (M) -426 (D) 

[a]The spectra were registered at 2980K. [b]
M – monomer with 

coordinated DMSO; D – dimer (see Scheme 2) 

From Table 1 it is evident that for alkyltin derivatives 2a, 3a, 4b, 5a and 6a the signals in 
119Sn NMR spectra are shifted to high field in bromine derivatives in comparison with the 
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corresponding chlorides. On dissolving in coordinating solvents the ligand exchange is observed 

for chlorides resulting in coordination of tin with the more polarized DMSO. 

We performed additional experiments for compound 3a. Firstly, the solvent was changed 

from DMSO-d6 to CD3CN. The target signal has transformed into very broad signal. Secondly, 

the spectra were registered in mixtures (2:1, 1:1) of polar and strongly coordinating DMSO-d6 

and nonpolar and noncoordinating C6D6. It was established that addition of C6D6 results in 

decreasing (and full disappearance) of one of the signals (Figs. S3, S4, Supporting Information), 

which may be attributed to the monomer. So, the data obtained indicate the dependence of the 

behavior of the tin compounds in solutions on the solvent’s nature and confirm the dissociation-

association equilibrium between hypercoordinated tin bromides in solutions. 

Thus, in the case of chlorides the dimeric structures obtained for the crystals are also 

retained in the amorphous phase. In solutions in coordinating solvents (such as DMSO), these 

dimers are solvated by the solvent, resulting in a monomer structure. Structures of several 

solvates were investigated by XRD (see below). The corresponding bromides in the crystal and 

in the amorphous phase are dimeric, too. However, unlike chlorides, for the bromides in 

coordinating solvents a monomer-dimer equilibrium is observed. 

2.3 X-ray analysis 

The molecular structures of five compounds obtained in the course of this work were 

investigated by X-ray analysis (Figures 1-5, Tables 2-4). 

Structures 2a, 3a and 4b are the first compounds containing O3Sn(C)Br2 fragment which 

were investigated by X-ray analysis. The compounds 2a and 3a are isostructural and similar to 

5a [16]; there are two independent molecules in crystal of 2a. 
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Fig. 1. The molecular structure of 2a; only one independent molecule is presented; hydrogen 

atoms are omitted for clarity. Displacement ellipsoids are shown at 50 % probability level. 

 

Fig. 2. The molecular structure of 3a; hydrogen atoms are omitted for clarity. Displacement 

ellipsoids are shown at 50 % probability level. 
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Fig. 3. The molecular structure of 4b; hydrogen atoms are omitted for clarity. Displacement 

ellipsoids are shown at 50 % probability level. 

Table 2 

Principal bond lengths (Å) and angles (o) for compounds 2a, 3a and 4b. 

2a
a 3a 4b 

Sn1-Br1 

2.5869(4) 

Sn2-Br3 

2.5656(4) 

Sn1-Br1 

2.5709(7) 

Sn1-Br1 

2.5594(9) 

Sn1-Br2 

2.5805(4) 

Sn2-Br4 

2.5931(4) 

Sn1-Br2 

2.5762(7) 

Sn1-Br2 

2.5610(9) 

Sn1-O1 

2.190(2) 

Sn2-O3 

2.207(2) 

Sn1-O1 

2.200(2) 

Sn1-O1 

2.204(5) 

Sn1-O2 

2.087(2) 

Sn2-O4 

2.089(2) 

Sn1-O2 

2.069(2) 

Sn1-O2 

2.073(5) 

Sn1-O2A 

2.276(2) 

Sn2-O4A 

2.269(2) 

Sn1-O2A 

2.305(2) 

Sn1-O2A 

2.285(5) 

Sn1-C5 

2.147(3) 

Sn2-C11 

2.138(3) 

Sn1-C5 

2.123(3) 

Sn1-C7 

2.140(7) 

O2-Sn1-C5 

154.51(11) 

O4-Sn2-C11 

155.65(11) 

O2-Sn1-C5 

151.27(12) 

O2-Sn1-C7 

154.2(2) 
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O2-Sn1-Br1 

165.42(5) 

O3-Sn2-Br3 

167.18(6) 

O1-Sn1-Br1 

167.01(7) 

O2A-Sn1-

Br(1) 

166.63(12) 

O1-Sn1-Br2 

166.42(6) 

O4-Sn2-Br4 

163.81(6) 

O2A-Sn1-

Br2 

164.98(6) 

O1-Sn1-Br2 

166.60(13) 

Sn1-O2-Sn1 

108.42(9) 

Sn2-O4-Sn2 

108.85(9) 

Sn1-O2-

Sn1A 

108.82(10) 

Sn1-O2-

Sn1A 

107.53(19) 

O2-Sn1-O2 

71.58(9) 

O4-Sn2-O4 

71.15(9) 

O2-Sn1-

O2A 

71.18(10) 

O2-Sn1-

O2A 

72.47(12) 

a Two independent molecules 

The bromides 2a, 3a, 4b in the solid state are centrosymmetric dimers due to the 

coordination bond between tin and the oxygen atom of glyoxylic fragment from another 

molecule. So, in these cases a ladder type fragments are formed consisting of three cycles with 

almost planar Sn2O2. Tin atom is hexacoordinated and bromine atoms (in cis-positions) situated 

trans to oxygens which form coordination bonds with tin atoms. 

The structural parameters of the three molecules under investigation are very similar. 

Furthermore, there are very small bond elongations in Br derivatives in comparison with 

corresponding Cl compounds [16] (compare, for example, average values for 2a/5a: Sn-O1 

2.199(2)/2.193(1), Sn-O2 2.088(2)/2.086(1), Sn-O2A 2.273(2)/2.265(1), Sn-C 2.143(3)/2.135(1) 

Å). This gives the possibility to propose that in crystals the hypercoordinated tin atoms exhibit 

similar Lewis acidity both in cases of chlorides and bromides. 

The molecular structures of monomeric chlorides 5a*DMSO and 6a*DMSO are 

isostructural. DMSO is coordinated via O to tin which is typical for Sn compounds [20]. In both 

compounds tin atom has a distorted octahedral environment in which oxygen atoms occupy cis-

positions (fac-configuration). The chlorine atoms are situated in trans-positions to oxygen atoms 

which are coordinated to Sn. It should be noted that the tin compounds containing cyclopropyl 

group have been almost unknown to date, in fact there were only two structures of 

tetracoordinated Sn derivatives [21]. 

In general, the bond lengths in 6a*DMSO are somewhat shorter than in 5a*DMSO likely 

due to presence of the cyclopropyl group. The main feature of 5a*DMSO are almost equal Sn-O 

bond lengths with coordinative O atoms from DMSO and glycolic fragment (2.2101(10) vs. 
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2.2127(10) Å). Furthermore, the similar bond lengths in 5a*DMSO are somewhat longer than 

the related ones in dimer 5a [16] (compare, for example, Sn-C 2.1364(14)/2.1351(14), Sn-Cl1 

2.4550(3)/2.4190(4), Sn-O2 2.2127(10)/2.1928(10) Å) this may be explained by the fact that 

DMSO molecule is a better donor for Sn than oxygen atom from another complex molecule in 

the chlorine derivatives.  

Moreover, it should be noted that the significant trans-effect in 5a*DMSO and 6a*DMSO 

is observed. The elongation of Sn-Cl2 bond lengths (trans- to DMSO) in comparison with Sn-

Cl1 indicates more significant donor properties of DMSO in comparison with the coordinative 

C(O)NMe2 group. 

The Sn-O bond lengths in 5a*DMSO and 6a*DMSO are elongated in comparison with free 

DMSO (1.5456(10) and 1.5478(11) vs. 1.531(5) Å [22]), reflecting a significant polarized 

structure in coordinating DMSO molecule for these chlorides. 

Due to absence of OH and NH groups the crystal packing of structures studied are 

constructed via weak C-H…O and C-H…Br bonds. All intermolecular distances correspond to 

ordinary van-der-Waals interactions.   

 

Fig.4. The molecular structure of 5a•DMSO; hydrogen atoms are omitted for clarity. 

Displacement ellipsoids are shown at 50 % probability level. 
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Fig.5. The molecular structure of 6a•DMSO; hydrogen atoms are omitted for clarity. 

Displacement ellipsoids are shown at 50 % probability level. 

Table 3 

Principal bond lengths (Å) and angles (o) for compounds 5a*DMSO and 6a*DMSO. 

5a*DMSO  6a*DMSO 

Sn1-Cl1 2.4550(3) Sn1-Cl1 2.4467(4) 

Sn1-Cl2 2.4730(4) Sn1-Cl2 2.4719(4) 

Sn1-O1 2.0064(10) Sn1-O2 2.0081(11) 

Sn1-O2 2.2127(10) Sn1-O1 2.1974(11) 

Sn1-O3 2.2101(10) Sn1-O1A 2.2073(11) 

Sn1-C1 2.1364(14) Sn1-C1 2.1062(15) 

S1-O3 1.5456(10) S1A-O1A 1.5478(11) 

O1-Sn1-C1 166.92(5) O2-Sn1-C1 166.00(5) 

O2-Sn1-Cl1 166.30(3) O1-Sn1-Cl1 169.48(3) 

O3-Sn1-Cl2 173.33(3) O1A-Sn1-Cl2 172.72(3) 
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3. Experimental  

3.1. General 

All solvents were purified using standard procedures (hexane and C6D6 were refluxed over 

Na; diethyl ether was stored over KOH, refluxed over Na/benzophenone; MeCN was refluxed 

over CaH2; DMSO-d6 was refluxed over CaH2 and after distillation in vacuum is stored over 

molecular sieves) and redistilled prior to use. Syntheses of the compounds 2a, 3a and 4b were 

carried out in the argon atmosphere using standard Schlenk technique. 

The IR spectra were recorded by using a 200 Thermo Nicolet apparatus. 1H, 13C and 119Sn 

NMR spectra for solutions were recorded by using a Bruker Avance 400 NMR spectrometer 

(400.1, 100.6 and 106.2 MHz, respectively). The chemical shifts were measured using 

tetramethylsilane (1H, 13C) or tetramethyltin (119Sn) as the internal references. The 119Sn 

CP/MAS NMR spectra were recorded on a JEOL EX 400 NMR (149.1 MHz) using a DOTY 

solid state probe and 5mm rotors, at room temperature (25oC); contact time 5 ms; relaxation 

delay 5 s; number of scans 12800. The chemical shifts were externally referenced to 

tetramethyltin. 

O-TMS derivatives of N,N-dimethylamide (1a) [16] and morpholinyl (1b) [23] of glycolic 

acid, EtSnBr3 [24] and n-BuSnBr3 [25], complexes 5a, 6a and 7b [10] were synthesized 

according to the described procedures. 

3.2. Synthesis 

3.2.1. Phenytin tribromide (PhSnBr3) 

The mixture of Ph4Sn (1.68 g, 3.90 mmol) and SnBr4 (5.12 g, 12.00 mmol) were stirred under 

argon at 190°С for 16 hours. Fractionation in vacuum gave 5.16 g (75 %) of PhSnBr3 as a 

colourless liquid, b.p. 101°С at 0.5 mm Hg, lit. [26] b.p. 182-183°С at 29 mm Hg. 1H NMR 

(400.1 MHz, C6D6, 25oC): δ = 7.08-7.05 (m, 2H, aromatic hydrogens), 6.93-6.96 (m, 3H, 

aromatic hydrogens) ppm. 13C NMR (100.6 MHz, C6D6, 25oC): δ = 137.86, 133.30, 132.40 and 

129.88 (aromatic carbons) ppm. 119Sn NMR (106.2 MHz, C6D6, 25oC): δ = -225.3 ppm. 

3.2.2. Synthesis of compound 2a 
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To a stirred solution of EtSnBr3 (0.97 g, 2.50 mmol) in hexane (7 mL) the solution of compound 

1a (0.44 g, 2.50 mmol) in hexane (7 mL) was added drop wise at ambient temperature, the 

mixture was stirred for 30 min at the same temperature and refluxed for 1 hour. After cooling the 

precipitate formed was filtered off, washed with hexane and dried in vacuum. Yield was 0.91 g 

of product containing some impurities according to 1H NMR. Recrystallization from acetonitrile 

gave 0.21 g (20%) of pure product as a white crystalline solid, m. p. 203-204°С. IR (KBr): ν = 

1640, 1468, 1383, 1060 cm-1. 1H NMR (400.1 MHz, DMSO-d6, 25°С): δ = 4.56-4.40 (br s, 2H, 

OCH2), 3.06 (s, 3H, NCH3), 3.02 (s, 3H, NCH3), 1.68-1.55 (m, 2H, SnCH2), 1.18 (t, 3
JH,H = 7.8 

Hz, 2H, CH3) ppm. 119Sn NMR (106.2 MHz, DMSO-d6, 25°С): δ = -427.4 and -417.5 ppm. 

Found: С 17.49, Н 3.10, N 3.45. C6H13NO2SnBr2. Calcd. C 17.56, H 3.17, N 3.41. 

3.2.3. Synthesis of compound 3a 

The mixture of n-BuSnBr3 (1.00 g, 2.40 mmol) and 1a (0.42 g, 2.40 mmol) in acetonitrile 

(15 mL) was refluxed for 8 hours. After cooling to room temperature diethyl ether (20 mL) was 

added and the resulting mixture was kept at 4ºС overnight. The precipitate was filtered off, 

washed with diethyl ether and dried in vacuum to yield 0.20 g (19%) of 3a as white crystals, 

m. p. 170-171 °С. IR (KBr): ν = 1637, 1491, 1410, 1051 cm-1. 1H NMR (400.1 MHz, DMSO-d6, 

25°С): δ = 4.53 (br s) and 4.44 (br s) (2H, OCH2), 3.06 (s, 3H, NCH3), 3.02 (s, 3H, NCH3), 1.76-

1.29 (m, 6H, SnCH2CH2CH2), 0.86 (t, 3
JH,H = 7.3 Hz, 3H, CH3) ppm. 1H NMR (400.1 MHz, 

DMSO-d6, 65°С): δ = 4.47 (s, 3
J119Sn, H = 87.2 Hz, 2H, OCH2), 3.07 (s, 3H, NCH3), 3.03 (s, 3H, 

NCH3), 1.72-1.62 (m, 2
J119Sn, H = 131.6 Hz, 4H, SnCH2CH2), 1.41-1.32 (m, 2H, CH2), 0.86 (t, 

3
JH,H = 7.3 Hz, 3H, CH3) ppm. 1H NMR (400.1 MHz, CD3CN, 25°С): δ = 4.57 (br s, 2H, OCH2), 

3.05 (s, 3H, NCH3), 3.00 (s, 3H, NCH3), 2.03-2.19 (m, 2H, OCH2), 1.70-1.79 (m, 2H, CH2), 

1.41-1.51 (m, 2H, CH2), 0.94 (t, 3
JH,H = 7.2 Hz, 3H, CH3) ppm. 13C NMR (100.6 MHz, CD3CN, 

25°С): δ = 178.10 (C=O), 62.16 (OCH2), 38.00 (NCH3), 36.74, 29.19, 26.15, 14.35 (Bu) ppm. 
13C NMR (100.6 MHz, DMSO-d6, 65°С): δ = 177.67 (C=O), 59.98 (OCH2), 36.32 (NCH3), 

34.77, 27.02, 24.09, 13.02 (Bu) ppm. 119Sn NMR (106.2 MHz, CD3CN, 25°С): δ = -344.3 (br s) 

ppm. 119Sn NMR (106.2 MHz, DMSO-d6, 25°С): δ = -425.7 and - 431.4 ppm. 119Sn NMR 

(106.2 MHz, DMSO-d6/C6D6 (2:1), 25°С): δ = -424.2 and - 430.5 ppm. 119Sn NMR (106.2 MHz, 

DMSO-d6/ C6D6 (1:1), 25°С): δ = -423.0 ppm. 119Sn NMR (106.2 MHz, DMSO-d6, 65°С): δ = -

427.9 ppm. Found С 21.88, Н 3.74, N 3.28. C8H17NO2SnBr2. Calcd. C 21.92, H 3.88, N 3.20. 

3.2.4. Synthesis of compound 4b 

The mixture of PhSnBr3 (3.15 g, 7.20 mmol) and 1b (1.57 g, 7.20 mmol) in acetonitrile (15 

mL) was stirred at ambient temperature for 15 hours. The precipitate was filtered off, washed 

with diethyl ether and dried in vacuum. Yield 1.34 g (37 %), white crystalline powder, m.p. 
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>250°С. IR (KBr): ν = 1616, 1479, 1436, 1273, 1114, 1064, 1031 cm-1. 1H NMR (400.1 MHz, 

DMSO-d6, 25°С): δ = 7.73-7.67 (m, 3
J119Sn, H = 131.8 Hz, 2H, Ph), 7.44-7.27 (m, 3H, Ph), 4.71 

(s, 3
J119Sn, H = 92.3 Hz) and 4.56 (s, 3

J119Sn, H = 92.3 Hz) (2H, OCH2), 3.73-3.50 (m, 8H, 

NCH2CH2O) ppm. 13C NMR (100.6 MHz, DMSO-d6, 25°С): δ = 176.77 and 176.56 (С=O), 

152.42 (ipso-C6H5); 133.99 and 133.28 (2
J119Sn, 13C = 76.3 Hz, o-C6H5), 128.69 and 128.49 

(3
J119Sn, 13C = 212.0 Hz, m-C6H5), 127.74 (4

J119Sn, 13C = 134.2 Hz, p-C6H5), 65.82 (NCH2CH2O), 

60.49 (br) and 60.14 (SnOCH2), 44.61, 44.27 and 44.04 (NCH2CH2O) ppm. 119Sn NMR (106.2 

MHz, DMSO-d6, 25°С): δ = -489.7 (br) and -494.7 ppm. 119Sn CP/MAS NMR: δ = -503 ppm. 

Found С 28.33, H 3.15, N 2.78. C12H15NO3SnBr2. Calcd. С 28.84, H 3.03, N 2.80. 

3.3. Single crystal X-ray studies 

All measurements were carried out with Bruker APEX II and APEX DUO diffractometers. The 

structures were solved by direct methods and refined in anisotropic approximation against F2. 

Hydrogen atoms were calculated from geometrical point of view and refined with restraints 

applied on the C-H bond length and thermal parameters. The calculations were carried out with 

SHELX software [27]. Molecular graphics were drawn using OLEX2 program [28]. Atomic 

coordinates and thermal parameters and the information about experimental conditions were 

submitted to Cambridge Crystallographic Data Centre (CCDC numbers are 1029878-1029882) 

and can be obtained free of charge via Web Service 

http://www.ccdc.cam.ac.uk/Community/Requestastructure/pages/Requestastructure.aspx. 

Table 4 
Crystallographic data for compounds 2a, 3a, 4b, 5a•DMSO and 6a•DMSO. 

 2a 3a 4b 5a•DMSO 6a•DMSO 
empirical formula C12H26Br4N2O4S

n2 
C8H17Br2NO2S
n 

C24H30Br4N2O6S
n2 

C8H19Cl2NO3SS
n 

C9H19Cl2NO3SS
n 

Mw 819.37 451.76 999.52 398.89 410.40 

temperature (K) 100(2) 100(2) 100(2) 100(2) 100(2) 

size (mm) 0.16 x 0.12 x 
0.10 

0.25 x 0.16 x 
0.12 

0.15 x 0.12 x 
0.10 

0.36 x 0.35 x 
0.29 

0.21 x 0.17 x 
0.13 

space group P21/c P21/c Pbca P21/c P21/c 

a (Å) 14.1935(8) 7.7675(18) 9.9829(13) 11.1337(4) 11.0622(8) 

b (Å) 14.5891(8) 14.882(4) 15.273(2) 9.4847(4) 9.5005(7) 

c (Å) 11.3952(6) 11.791(3) 19.742(3) 14.9293(6) 15.3362(11) 

β (deg) 104.0050(10) 102.577(4) 90 111.3220(10) 111.0160(10) 

V (Å3) 2289.5(2) 1330.3(5) 3010.1(7) 1468.62(10) 1504.56(19) 

Z 4 4 4 4 4 

ρcald (g*cm-3) 2.377 2.256 2.206 1.804 1.812 

abs coeff. (mm-1) 9.180 7.911 7.010 2.239 2.188 

F(000) 1536 864 1904 792 814 

θ range (deg) 2.31 – 30.53 2.24 – 27.59 2.44 – 28.60 2.60 – 31.24 2.573 – 34.554 

no. of 
collected/unique 

21526 / 5469 18164 / 3244 37134 / 2779 19192 / 4415 25004 / 4024 
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rflns. 

Rint 0.0428 0.0722 0.1606 0.0212 0.0320 

data/restraints/param
s. 

7024 / 0 / 223 4473/ 0 / 130 4601 / 0 / 172 4692 / 0 / 150 4412 / 0/ 158 

goodness of fit on F2 0.996 0.955 1.059 1.028 1.043 

 R1 (I > 2σ(I)) 0.0304 0.0343 0.0573 0.0173 0.0178 

wR2  (all data) 0.0569  0.0702  0.1271  0.0391  0.0405 

largest diff. 
peak/hole (e/Å3) 

1.072 / -0.957 0.890 / -1.343 2.127 / -1.505 0.522 / -0.589 0.538 / -0.379 

 

4. Conclusions 

In conclusion, the bromides 2a, 3a, 4b were synthesized via interaction of monoorganotin 

tribromides (RSnBr3; R = Et, n-Bu, Ph) with O-TMS derivatives of N, N-disubstituted amides of 

glycolic acid (1a,b). It was established in the solid state that 2a, 3a, 4b (X-ray analysis) are 

dimeric and found to be similar to the analogous chlorides. In solution the behavior of these 

bromides differs significantly from the related chlorides. The dynamic equilibrium between 

dimer and monomer adducts with DMSO molecules is observed. In the case of related chlorides 

5a, 6a, 7b the equilibrium is shifted towards monomers, for 5a and 6a the crystalline monomer 

adducts with DMSO were isolated and studied by X-ray analysis. 
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The hypercoordinated monoorganodibromides were synthesized by interaction of tribromides 
RSnBr3 with O-TMS derivatives of N,N-disubstituted amides. In solution behavior of bromides 
differs from the analogous chlorides, including equilibrium dimer/monomer adducts with 
DMSO. In the case of chlorides the equilibrium is shifted towards monomers. In solid state tin 
compounds are dimeric. 
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- A series of hypercoordinated monoorganotin dibromides was obtained 
- The bromides studied are dimeric in solid state 
- In solution for bromides the equilibrium dimer/solavated monomer is observed 
- In solution for chlorides the equilibrium is shifted to monomer adduct with solvent 

 


