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Abstract

Gels are used to design bilayered structures with high residual stresses. The
swelling of a thin layer on a compliant substrate leads to compressive stresses.
The post-buckling of this layer is investigated experimentally; the wavelengths
and amplitudes of the resulting modes are measured. A simplified model with a
self-avoiding rod on a Winkler foundation is in semi-quantitative agreement with
experiments and reproduces the observed cusp-like folds.
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1 Introduction

The buckling of multilayered structures is a strong limitation in the design of
sandwich panels [1]. This field has been renewed by experiments aiming at the
micro-patterning of surfaces through the buckling of thin films bound to compli-
ant substrates (see e.g. [2] for a review). For metal films vapor-deposited on an
elastomer [3], high compressive residual stresses are generated in the film when the
system is cooled, due to the mismatch in thermal expansion coefficients between
the metal and the elastomer. Recent theoretical efforts addressed nonlinear post-
buckling and herringbone patterns in metal-capped elastomers [4, 5, 6]. Residual
stresses are also generated in living tissues when growth occurs inhomogeneously
in space [7]. Subsequent instabilities can be investigated within the framework
of finite elasticity [8]. In fact, the buckling of multilayered structures was used to
explain convolutions in brain development [9, 10], the organization of seeds on a
flower [11] or fingerprints formation [12].

Our aim is to address experimentally the post-buckling of a thin film on a
compliant substrate in the case of strong residual stresses. As thermal expansion
induces only small strains, we were led to use polymeric aqueous gels. They are
made of a polymeric network immersed in water; they can absorb more water and
swell by a length ratio of up to 10 [13]; their rate of swelling and elastic moduli
can be controlled independently by tuning the chemical composition. Two main
geometries were investigated experimentally in previous work (see e.g. [14] for
a review). The swelling of a gel layer bonded to a rigid substrate results in a
cusped oscillating surface with a wavelength proportional to the thickness of the
layer [15, 16]. The swelling of a a gel plate bonded at the edge to a stiff gel
results in buckling with a wavelength proportional to the width of the plate [17],
mimicking the wrinkling of the edge of leaves [18, 19].

Here were are concerned with a two-layered gel with a stiff swelling layer (elas-
tic modulus Etop, thickness h) ontop a soft non-swelling thick substrate (modulus
Esubs). The buckling of such a gel system was investigated theoretically in [20] :
the amount of swelling determines the residual stress σ and the buckling stress
σc and wavelength λc are given by the classical formulas [1],

σc

Etop

=
1

31/3

(

Esubs

Etop

)2/3

, (1)

λc

h
=

2π

31/3

(

Etop

Esubs

)1/3

, (2)

with a Poisson ration ν = 1/2 as gels are in general incompressible. Above
threshold, the amplitude A of oscillation of the post-buckled state should be a
function of the residual stress σ [4],

A

h
=

√

σ

σc

− 1. (3)
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In the present study, we investigate experimentally post-buckled states in
the case of strong residual stresses. Incidentally, the cusped oscillating shapes
obtained are reminiscent of brain convolutions [9]. The article is organized as
follows. We describe our experimental set-up and a simplified model with a
compressed self-avoiding rod bound to an elastic foundation. Then we compare
and discuss the experimental and numerical results.

2 Experiments

S (substrate) T (top layer)

[AA+BISAA] 720 1202
BISAA:AA ratio 1:37.5 1:19
[SA] 0 229
Swelling ratio (3D) 1.06 1.5
Swelling ratio (2D) 1.09 1.8
E (Pa) 5.0 · 103 1.7 · 104

Poisson ratio 1/2 1/2

—

Table 1: Composition and properties of the gels mainly used in the experiments.
Concentrations are given in mmol.L−1. The swelling ratio corresponds to the
length dilation factor of a gel piece after swelling, when it is free (3D) or con-
strained in plane strain (2D). E is the elastic modulus of the gel (after swelling).

The principle of the experiments is to first prepare the substrate layer then
pour the solution for the thin top layer. We made our gels as in [13, 15, 16, 17].
A mixture of acrylamide (AA) and N,N’-methylenebisacrylamide (BISAA) is
dissolved with sodium acrylate (SA) in distilled water. The polymerization
is initiated by ammonium persulfate (PA) and is catalysed with N,N,N’,N’-
tetramethylenediamine (TEMED) (0.3% in volume). The composition of the
gels is given in Table 1. Once the mixture is completed, gelation (polymerization
and solidification of the solution) occurs in a few seconds at room temperature.
In order to obtain uniform layers — especially for thin layers — the solutions
were cooled to slow gelation and allow the liquid to spread completely on the
substrate.

The characteristics of the gel can be tuned by varying the concentrations of
the components. The more concentrated (and, for a same concentration, the
more concentrated in BISAA) the solution, the stiffer the gel. Likewise, the
swelling ratio (the ratio between a free gel dimensions before and after swelling)
can be increased by adding sodium acrylate. For the purpose of the experiment
we prepared two distinct types of gel: (S) a soft and non-swelling gel; (T) a stiff
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Figure 1: Top view after swelling of the top layer (thickness h = 1 mm above a 3
cm thick substrate) in a dish of 10 cm diameter. The valleys are lighter than the
crests. The lighting is not uniform as a dark strip was placed below to increase
the contrast.

and swelling gel. The elastic and swelling properties of these gels were measured
and are reported in Tab. 1. In order to obtain a compliant substrate, we chose
the highest ratio between the elastic moduli allowed by the experiment.

In preliminary experiments, we prepared a thick (3 cm) substrate made of
the soft gel (S) in a Petri dish; a 1 mm-thick layer of the second solution (T)
was poured above. After gelation, the two layers were chemically bound to each
other: no delamination was observed. Then water was added in the dish. It was
slowly absorbed by the top layer which started to wrinkle. The wrinkle evolution
was slow and a stationary state was reached after half an hour to one hour. A
corresponding top view is shown in Fig. 1. The pattern looks like a superposition
of sinusoidal modes with random directions and a wavelength of about 1 cm. The
thickest (1cm) top layers that we used would not reach a stationary state before
2 to 4 days. This is consistent with the fact that absorption of water by the gel
is a diffusive process [13], so that the equilibration time is proportional to the
square of the thickness.

In order to monitor easily the displacements of the top layer and get a better
experimental control, we designed a set-up to constrain plain strain. The cell
was made with two glass plates with a 1 mm gap. Rubber stripes were used as
spacers and delimited the bottom and sides of the cell. The glass plates were
held together by clamps. The gel bi-layer was prepared in the cell according to
the geometry depicted in Fig. 2: a hard swelling top (T) with thickness in the
1–6 mm range and a soft substrate (S) with a thickness of about 2.5 cm.
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Water

Soft Gel

Hard Gel

≃ 2, 5 cm

≃ 1 − 10 mm

1 mm

12 cm

Figure 2: Typical geometry and dimensions of the main experimental setup.
Plane displacements are constrained by enclosing the whole between two glass
plates with a gap of 1 mm.

Figure 3: Side view of the gel top layer (colored with ink) after swelling. Thickness
h = 3 mm (after swelling), wavelength λ = 8.9 mm and amplitude A = 5.1 mm.

Absorption of water by the upper gel layer initialized swelling. In the early
stages of the experiments, we observe the appearance of fold structures (usually
in the center of the cell) separated by a few mm; subsequent appearing structures
are then separated by progressively larger and larger distances. Eventually, once
water has penetrated across the entire gel layer, the system reaches an equilibrium
state for which patterns have well-defined wavelengths and amplitudes of the
order of a few mm. The surface of the gel oscillates with cups (Fig. 3). In order
to check wether the gel was damaged at these cusps, we opened the cell by taking
out one glass plate (Fig. 4); it turns out that no failure occurs at the surface of
the top layer.

Figure 4: View of the gel after taking out one glass plate showing that the cusps
did not damage the gel. The swollen layer is oscillating out of plane due to the
strong compressive residual stress.
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Figure 5: Geometry of the model.

Figure 6: Numerical equilibrium configurations for three values of the thickness
h (a) 1.7 mm, (b) 2 mm and (c) 4 mm. The Young modulus of the substrate is
Esubs = 4.6 104 Pa and the Young modulus of the top layer Etop is (a) 292 Pa,
(b) 375 Pa and (c) 585 Pas, respectively.

3 The model

In order to interpret the experimental results, we generalize here the classical
model of plate/rod on a Winkler foundation, remaining in the framework of linear
elasticity. In the following, we will formulate the model for a rod and count the
elastic energies per unit of gap of the cell, because the strains are constrained to
be plane in the experiment. As we are interested in the post-buckling regime, we
assume the rod to be inextensible. Indeed for large displacements of the film, the
energetical cost of stretching becomes large compared to the cost of bending [21];
therefore stretching is avoided and the film may be assumed inextensible. Two
important experimental features should be taken into account. First there is
an asymmetry between the two surfaces of the top layer. Second cusps involve
self-contact of the upper surface. As a consequence, we study a self-avoiding
inextensible rod on a Winkler foundation linked to the lower surface of the rod.

More precisely, we consider an elastic rod with neutral line r(s) = x(s)ex +
z(s)ez parametrised by the arc-length s ∈ (0, L) (Fig. 5). We define the tangential
and normal unit vectors by t(s) = r′(s), n(s) = t′(s)/‖t′(s)‖ and the curvature
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by κ(s) = n(s)·t′(s). In order to take into account the finite thickness h of the gel
layer, we construct its lower and upper surfaces by defining r±(s) = r(s)∓ h

2
n(s).

We take as a reference configuration a free rod of length L and thickness
h (corresponding to the state after swelling). Then we match it to a Winkler
foundation of length L0, such that L/L0 > 1 is the swelling ratio. To each
configuration r(s), we associate the elastic energy:

E [{r}] =
1

2
D

∫ L

0

κ(s)2ds +
1

2
k

∫ L

0

(

r−(s) − sL0

L
ex

)2
ds

−σrh (r(L) − r(0) − L0ex) ·ex + H[r+]. (4)

The first term is the bending energy with a bending stiffness D = Etoph
3/9,

assuming an incompressible material. The second is the energy of the Winkler
foundation where x and y displacements of the lower surface of the rod are taken
into account – the reference state r−(s) of the foundation has a length L0, so that
r−(s)|ref = sL0/Lex; the stiffness of the foundation is given by k = 4π/3 Esubs/λ
to be equivalent to an elastic half-space of Young’s modulus Esubs deformed with
a wavelength λ – note that in the experiment, the thickness of the substrate
is larger than the observed wavelengths so that it is legitimate to consider the
substrate as half-infinite. In the numerics, k was fixed and Esubs deduced from the
value of λ. The third term contains the compressive stress σr, taken as a Lagrange
multiplier, needed to achieve the projected length L0 on the ex direction. The
fourth and last term is a purely geometric contribution introduced to forbid self-
crossing of the upper interface. More precisely, H[{r+}] = +∞ if r+(s) = r+(s′)
has at least one solution other then s = s′ and H[{r+}] = 0 otherwise.

We performed the study of this rod-like model through the numerical mini-
mization of energy (4). The rod was descretized in N parts (100–500 in prac-
tice), each of length L/N , by defining coordinates ri = xiex + ziez with xi =
L
N

∑i
j=1 cos θj and zi = L

N

∑i
j=1 sin θj (i = 1, . . . , N +1). Introducing the tangent

ti and normal ni vectors to segment (ri, ri+1), the lower and upper interfaces were
reconstructed by r±i = 1

2
(ri + ri+1 ∓hni). The energy is then a function of the θi.

Powell’s algorithm of minimization [22] allowed to cope with the discontinuous
behavior of H[{r+}]. Examples of minimal energy configurations are shown in
Fig. 6 with values of the parameters in the experimental range. It can be seen
that two experimental features are reproduced: large amplitude oscillations and
self-contacting upper surface. A more quantitative comparison with the experi-
ments is the subject of the next section, whereas the limitations of the model are
discussed in the conclusion.

4 Results

Before discussing the observations on wavelengths and amplitudes, let us estimate
the residual stress induced by swelling and compare it to the buckling threshold.
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Figure 7: Experiments: Wavelength (left) and amplitude (right) of the gel oscil-
lations as a function of the top layer thickness. The wavelength λ was rescaled by
the dimensionless coefficient (Esubs

Etop
)1/3 ≃ 0.67. Horizontal errorbars correspond

to the (≃ 1 mm) measure error on the thickness h; vertical bars correspond to
(typically 10%) fluctuations on the distance between two adjacent folds and their
amplitude.

The swelling ratio roughly gives the residual strain ǫ ≃ 0.8, which induces a
residual stress σ = 2/3Etop/ǫ assuming plane strain and incompressibility of the
material. The ratio of this stress to the threshold is σ/σc = 2(Etop/3Esubs)

2/3ǫ ≃
2.2, so that we expect buckling.

At constant mechanical properties (same Etop and Esubs), we measured the
equilibrium wavelengths and amplitudes of oscillation. The thicknesses of the
upper gel layer was in the range 1–6 mm leading to wavelengths from 6 to 20 mm
and amplitudes from 4 to 11 mm (Figure 7). The data can be fitted by a linear
dependance. We find λ ≃ 2(Etop/Esubs)

1/3h which is clearly below the classical
value λ = 4.4(Etop/Esubs)

1/3h (Eq. 2). This last value should also hold above
threshold in the small slope regime [4]. Similarly, we find A ≃ 1.9h which is
above the value A = 1.1 h given by Eq. (3).

We also modified Young’s modulus of the gels as allowed by the chemical
composition. Decreasing their ratio yielded only a small change in wavelengths.
This can be accounted for by the weak dependance (power 1/3) on the ratio
Etop/Esubs. There seemed to be no dependance neither on the thickness of the
substrate nor on the gap, which were respectiveley larger and smaller than the
wavelength.

The classical results seem to provide the correct dependance of the wavelength
and amplitude but not the prefactors. We turn now to the results of the numerical
simulation of the self-avoinding rod on a Winkler foundation as introduced above.
Fitting the data to a linear dependance (Fig. 8) yields λ ≃ 1.4(Etop/Esubs)

1/3h
and A = 2.0 h, which are much closer to experiments. In fact, accounting for
large slopes tends to shorten wavelengths and increase amplitudes. Moreover, the
simulations also reproduce the qualitative shapes observed in the experiments;
the interface between the two gels is smooth whereas the oscillation of the free
surface involves self-contacts and cusp-like folds.
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Figure 8: Numerics: Wavelength (left) and amplitude of the gel oscillations as
a function of the top layer thickness. The wavelength λ was rescaled by the
dimensionless coefficient ( Etop

Esubs
)1/3.

5 Conclusion

Using the properties of gels, we built a bilayered structure with high residual
stresses. We focused on the case of a thin layer under compressive stress and a
compliant substrate. The thin layer undergoes buckling with wavelengths and
amplitudes that are proportional to its thickness, but with prefactors different
from those of the theory of thin film buckling [1, 4]. We introduced a simplified
model with a self-avoiding rod on a Winkler foundation. This model relies on
linear elasticity while large strains are involved and on a thin layer approximation
which is strictly valid only when its radius of curvature is larger than the thick-
ness. Despite the shortcomings of the model, the numerical minimization of the
corresponding elastic energy yielded results quantitatively closer to experiments
than the classical buckling analysis, and moreover reproduced the cusp-like folds
observed in experiments.

These folds are reminiscent of the convoluted shape of the brain, which might
involve mechanical instabilities [9, 10]. In fact high residual strains obtained
with gels are typical of the growth of living tissues [7]. Therefore, the set-up
that we developed might be used to mimic living tissues. Besides, much thinner
layers could be prepared by spin-coating, which would yield an alternative way
for micropatterning.
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[14] A. Boudaoud and S. Chäıeb. Mechanical phase diagram of shrinking cylin-
drical gels. Phys. Rev. E, 68:021801, 2003.

10



[15] T. Tanaka, S.-T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, and
T. Amiya. Mechanical instability of gels at the phase transition. Nature,
325:796–798, 1987.

[16] H. Tanaka and T. Sigehuzi. Surface-pattern evolution in a swelling gel un-
der a geometrical constraint: Direct observation of fold structure and its
coarsening dynamics. Phys. Rev. E, 49:R39–R42, 1994.

[17] T. Mora and A. Boudaoud. Buckling of Swelling Gels. Eur. Phys. J. E.,
20:119–124, 2006.

[18] E. Sharon, B. Roman, M. Marder, G.-S. Shin, and H. L. Swinney. Buckling
cascades in free sheets. Nature, 419:579, 2002.

[19] B. Audoly and A. Boudaoud. Self-Similar Structures near Boundaries in
Strained Systems. Phys. Rev. Lett., 91:086105, 2003.

[20] S. K. Basu, A. V. McCormick, and L. E. Scriven. Stress Generation by
Solvent Absorption and Wrinkling of a Cross-Linked Coating atop a Viscous
or Elastic Base. Langmuir, 22:5916–5924, 2006.
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