4 research outputs found

    Direct and indirect effects of fire on microbial communities in a pyrodiverse dry-sclerophyll forest

    Get PDF
    Fire is one of the predominant drivers of the structural and functional dynamics of forest ecosystems. In recent years, novel fire regimes have posed a major challenge to the management of pyrodiverse forests. While previous research efforts have focused on quantifying the impacts of fire on above-ground forest biodiversity, how microbial communities respond to fire is less understood, despite their functional significance. Here, we describe the effects of time since fire, fire frequency and their interaction on soil and leaf litter fungal and bacterial communities from the pyrodiverse, Eucalyptus pilularis forests of south-eastern Australia. Using structural equation models, we also elucidate how fire can influence these communities both directly and indirectly through biotic-abiotic interactions. Our results demonstrate that fire is a key driver of litter and soil bacterial and fungal communities, with effects most pronounced for soil fungal communities. Notably, recently burnt forest hosted lower abundances of symbiotic ectomycorrhizal fungi and Acidobacteria in the soil, and basidiomycetous fungi and Actinobacteriota in the litter. Compared with low fire frequencies, high fire frequency increased soil fungal plant pathogens, but reduced Actinobacteriota. The majority of fire effects on microbial communities were mediated by fire-induced changes in litter and soil abiotic properties. For instance, recent and more frequent fire was associated with reduced soil sulphur, which led to an increase in soil fungal plant pathogens and saprotrophic fungi in these sites. Pathogenic fungi also increased in recently burnt forests that had a low fire frequency, mediated by a decline in litter carbon and an increase in soil pH in these sites. Synthesis. Our findings indicate that predicted increases in the frequency of fire may select for specific microbial communities directly and indirectly through ecological interactions, which may have functional implications for plants (increase in pathogens, decrease in symbionts), decomposition rates (declines in Actinobacteriota and Acidobacteriota) and carbon storage (decrease in ectomycorrhizal fungi). In the face of predicted shifts in wildfire regimes, which may exacerbate fire-induced changes in microbial communities, adaptive fire management and monitoring is required to address the potential functional implications of fire-altered microbial communities

    Temporal dynamics of soil fungi in a pyrodiverse dry-sclerophyll forest

    Get PDF
    Fire is a major evolutionary and ecological driver that shapes biodiversity in forests. While above-ground community responses to fire have been well-documented, those below-ground are much less understood. However, below-ground communities, including fungi, play key roles in forests and facilitate the recovery of other organisms after fire. Here, we used internal transcribed spacer (ITS) meta-barcoding data from forests with three different times since fire [short (3 years), medium (13-19 years) and long (>26 years)] to characterize the temporal responses of soil fungal communities across functional groups, ectomycorrhizal exploration strategies and inter-guild associations. Our findings indicate that fire effects on fungal communities are strongest in the short to medium term, with clear distinctions between communities in forests with a short time (3 years) since fire, a medium time (13-19 years) and a long time (>26 years) since fire. Ectomycorrhizal fungi were disproportionately impacted by fire relative to saprotrophs, but the direction of the response varied depending on morphological structures and exploration strategies. For instance, short-distance ectomycorrhizal fungi increased with recent fire, while medium-distance (fringe) ectomycorrhizal fungi decreased. Further, we detected strong, negative inter-guild associations between ectomycorrhizal and saprotrophic fungi but only at medium and long times since fire. Given the functional significance of fungi, the temporal changes in fungal composition, inter-guild associations and functional groups after fire demonstrated in our study may have functional implications that require adaptive management to curtail

    Data from: Logging and fire regimes alter plant communities

    No full text
    Disturbances are key drivers of plant community composition, structure and function. Plant functional traits, including life forms and reproductive strategies are critical to the resilience and resistance of plant communities in the event of disturbance. Climate change and increasing anthropogenic disturbance are altering natural disturbance regimes, globally. When these regimes shift beyond the adaptive resilience of plant functional traits, local populations and ecosystem functions can become compromised. We tested the influence of multiple disturbances, of varying intensity and frequency, on the composition and abundance of vascular plant communities and their respective functional traits (life forms and reproductive strategies) in the wet sclerophyll, Mountain Ash Eucalyptus regnans forests of south-eastern Australia. Specifically, we quantified the effect of the type and number of disturbances (including fires, clearcut logging and salvage logging) on plant community composition. We found that clearcut and salvage logging and the number of fires significantly influenced plant community composition and functional traits. Specifically, multiple fires resulted in lower populations of species that depend on on-site seeding for persistence. This includes the common tree species, Eucalyptus regnans, Pomaderris aspera and Acacia dealbata. In contrast, clearcut and salvage logged sites supported abundant on-site seeder species. However, species that depend on resprouting by surviving individuals, such as common and keystone ‘tree ferns’ Dicksonia antarctica and Cyathea australis declined significantly. Our data have important implications for understanding the relationship between altered disturbance regimes and plant communities and the respective effects on ecosystem function. In a period of rapid global environmental change, with disturbances predicted to increase and intensify, it is critical to address the impact of altered disturbance regimes on biodiversity

    Temporal dynamics of soil fungi in a pyrodiverse dry-sclerophyll forest

    No full text
    Fire is a major evolutionary and ecological driver that shapes biodiversity in forests. While above-ground community responses to fire have been well-documented, those below-ground are much less understood. However, below-ground communities, including fungi, play key roles in forests and facilitate the recovery of other organisms after fire. Here, we used internal transcribed spacer (ITS) meta-barcoding data from forests with three different times since fire [short (3 years), medium (13–19 years) and long (>26 years)] to characterize the temporal responses of soil fungal communities across functional groups, ectomycorrhizal exploration strategies and inter-guild associations. Our findings indicate that fire effects on fungal communities are strongest in the short to medium term, with clear distinctions between communities in forests with a short time (3 years) since fire, a medium time (13–19 years) and a long time (>26 years) since fire. Ectomycorrhizal fungi were disproportionately impacted by fire relative to saprotrophs, but the direction of the response varied depending on morphological structures and exploration strategies. For instance, short-distance ectomycorrhizal fungi increased with recent fire, while medium-distance (fringe) ectomycorrhizal fungi decreased. Further, we detected strong, negative inter-guild associations between ectomycorrhizal and saprotrophic fungi but only at medium and long times since fire. Given the functional significance of fungi, the temporal changes in fungal composition, inter-guild associations and functional groups after fire demonstrated in our study may have functional implications that require adaptive management to curtail
    corecore