1,727 research outputs found

    The Onset of Planet Formation in Brown Dwarf Disks

    Full text link
    The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micron-sized dust grains accompanied by dust settling toward the disk mid-plane. Here we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.Comment: Published in Science 2005, vol 310, 834; 3 pages in final format, 4 figures + 8 pages Supporting Online Material. For final typeset, see http://www.sciencemag.org/cgi/content/abstract/310/5749/834?eto

    High spatial resolution mid-infrared observations of the low-mass young star TW Hya

    Get PDF
    We want to improve knowledge of the structure of the inner few AU of the circumstellar disk around the nearby T Tauri star TW Hya. Earlier studies have suggested the existence of a large inner hole, possibly caused by interactions with a growing protoplanet. We used interferometric observations in the N-band obtained with the MIDI instrument on the Very Large Telescope Interferometer, together with 10 micron spectra recorded by the infrared satellite Spitzer. The fact that we were able to determine N-band correlated fluxes and visibilities for this comparatively faint source shows that MIR interferometry can be applied to a large number of low-mass young stellar objects. The MIR spectra obtained with Spitzer reveal emission lines from HI (6-5), HI (7-6), and [Ne II] and show that over 90% of the dust we see in this wavelength regime is amorphous. According to the correlated flux measured with MIDI, most of the crystalline material is in the inner, unresolved part of the disk, about 1 AU in radius. The visibilities exclude the existence of a very large (3-4 AU radius) inner hole in the circumstellar disk of TW Hya, which was required in earlier models. We propose instead a geometry of the inner disk where an inner hole still exists, but at a much reduced radius, with the transition from zero to full disk height between 0.5 and 0.8 AU, and with an optically thin distribution of dust inside. Such a model can comply with SED and MIR visibilities, as well as with visibility and extended emission observed in the NIR at 2 micron. If a massive planet was the reason for this inner hole, as has been speculated, its orbit would have to be closer to the star than 0.3 AU. Alternatively, we may be witnessing the end of the accretion phase and an early phase of an inward-out dispersal of the circumstellar disk.Comment: 13 pages, 9 figures, accepted by A&

    Context-dependent detection of fungal parasites in four ant species

    Get PDF
    The reaction between the allyl radical (C3H5˙) and acetylene (C2H2) in a heated microtubular reactor has been studied at the VUV beamline of the Swiss Light Source. The reaction products are sampled from the reactor and identified by their photoion mass-selected threshold photoelectron spectra (ms-TPES) by means of imaging photoelectron photoion coincidence spectroscopy. Cyclopentadiene is identified as the sole reaction product by comparison of the measured photoelectron spectrum with that of cyclopentadiene. With the help of quantum-chemical computations of the C5H7 potential energy surface, the C2H2 + C3H5˙ association reaction is confirmed to be the rate determining step, after which H-elimination to form C5H6 is prompt in the absence of re-thermalization at low pressures. The formation of cyclopentadiene as the sole product from the allyl + acetylene reaction offers a direct path to the formation of cyclic hydrocarbons under combustion relevant conditions. Subsequent reactions of cyclopentadiene may lead to the formation of the smallest polycyclic aromatic molecule, naphthalene

    Molecular Signatures in the Near Infrared Dayside Spectrum of HD 189733b

    Get PDF
    We have measured the dayside spectrum of HD 189733b between 1.5 and 2.5 microns using the NICMOS instrument on the Hubble Space Telescope. The emergent spectrum contains significant modulation, which we attribute to the presence of molecular bands seen in absorption. We find that water (H2O), carbon monoxide (CO), and carbon dioxide (CO2) are needed to explain the observations, and we are able to estimate the mixing ratios for these molecules. We also find temperature decreases with altitude in the ~0.01 < P < ~1 bar region of the dayside near-infrared photosphere and set an upper limit to the dayside abundance of methane (CH4) at these pressures.Comment: 13 pages, 3 figures. accepted in Astrophysical Journal Letter

    Tracing the development of dust around evolved stars: The case of 47 Tuc

    Get PDF
    We observed mid-infrared (7.5-22 mum) spectra of AGB stars in the globular cluster 47 Tuc with the Spitzer telescope and find significant dust features of various types. Comparison of the characteristics of the dust spectra with the location of the stars in a logP-K-diagram shows that dust mineralogy and position on the AGB are related. A 13 mum feature is seen in spectra of low luminosity AGB stars. More luminous AGB stars show a broad feature at 11.5 mum. The spectra of the most luminous stars are dominated by the amorphous silicate bending vibration centered at 9.7 mum. For 47 Tuc AGB stars, we conclude that early on the AGB dust consisting primarily of Mg-, Al- and Fe oxides is formed. With further AGB evolution amorphous silicates become the dominant species.Comment: 2 figures, accepted for publication in ApJ Letter

    Dust in the wind: Crystalline silicates, corundum and periclase in PG 2112+059

    Full text link
    We have determined the mineralogical composition of dust in the Broad Absorption Line (BAL) quasar PG 2112+059 using mid-infrared spectroscopy obtained with the Spitzer Space Telescope. From spectral fitting of the solid state features, we find evidence for Mg-rich amorphous silicates with olivine stoichiometry, as well as the first detection of corundum (Al_2O_3) and periclase (MgO) in quasars. This mixed composition provides the first direct evidence for a clumpy density structure of the grain forming region. The silicates in total encompass 56.5% of the identified dust mass, while corundum takes up 38 wt.%. Depending on the choice of continuum, a range of mass fractions is observed for periclase ranging from 2.7% in the most conservative case to 9% in a less constrained continuum. In addition, we identify a feature at 11.2 micron as the crystalline silicate forsterite, with only a minor contribution from polycyclic aromatic hydrocarbons. The 5% crystalline silicate fraction requires high temperatures such as those found in the immediate quasar environment in order to counteract rapid destruction from cosmic rays.Comment: 2 figure

    Deeply embedded objects and shocked molecular hydrogen: The environment of the FU Orionis stars RNO 1B/1C

    Get PDF
    We present Spitzer IRAC and IRS observations of the dark cloud L1287. The mid-infrared (MIR) IRAC images show deeply embedded infrared sources in the vicinity of the FU Orionis objects RNO 1B and RNO 1C suggesting their association with a small young stellar cluster. For the first time we resolve the MIR point source associated with IRAS 00338+6312 which is a deeply embedded intermediate-mass protostar driving a known molecular outflow. The IRAC colors of all objects are consistent with young stars ranging from deeply embedded Class 0/I sources to Class II objects, part of which appear to be locally reddened. The two IRS spectra show strong absorption bands by ices and dust particles, confirming that the circumstellar environment around RNO 1B/1C has a high optical depth. Additional hydrogen emission lines from pure rotational transitions are superimposed on the spectra. Given the outflow direction, we attribute these emission lines to shocked gas in the molecular outflow powered by IRAS 00338+6312. The derived shock temperatures are in agreement with high velocity C-type shocks

    FU Orionis - The MIDI/VLTI Perspective

    Get PDF
    We present the first mid-infrared interferometric measurements of FU Orionis. We clearly resolve structures that are best explained with an optically thick accretion disk. A simple accretion disk model fits the observed SED and visibilities reasonably well and does not require the presence of any additional structure such as a dusty envelope. The inclination and also the position angle of the disk can be constrained from the multibaseline interferometric observations. Our disk model is in general agreement with most published near-infrared interferometric measurements. From the shape and strength of the 8-13 micrometer spectrum the dust composition of the accretion disk is derived for the first time. We conclude that most dust particles are amorphous and already much larger than those typically observed in the ISM. Although the high accretion rate of the system provides both, high temperatures out to large radii and an effective transport mechanism to distribute crystalline grains, we do not see any evidence for crystalline silicates neither in the total spectrum nor in the correlated flux spectra from the inner disk regions. Possible reasons for this non-detection are mentioned. All results are discussed in context with other high-spatial resolution observations of FU Ori and other FU Ori objects. We also address the question whether FU Ori is in a younger evolutionary stage than a classical TTauri star.Comment: 41 pages (aastex style), 11 figures, 8 tables, accepted by Ap

    ISO spectroscopy of circumstellar dust in the Herbig Ae systems AB Aur and HD 163296

    Get PDF
    Using both the Short- and Long-wavelength Spectrometers on board the Infrared Space Observatory (ISO), we have obtained infrared spectra of the Herbig Ae systems AB Aur and HD 163296. In addition, we obtained ground-based N band images of HD 163296. Our results can be summarized as follows: (1) The main dust components in AB Aur are amorphous silicates, iron oxide and PAHs; (2) The circumstellar dust in HD 163296 consists of amorphous silicates, iron oxide, water ice and a small fraction of crystalline silicates; (3) The infrared fluxes of HD 163296 are dominated by solid state features; (4) The colour temperature of the underlying continuum is much cooler in HD 163296 than in AB Aur, pointing to the existence of a population of very large (mm sized) dust grains in HD 163296; (5) The composition and degree of crystallization of circumstellar dust are poorly correlated with the age of the central star. The processes of crystallization and grain growth are also not necessarily coupled. This means that either the evolution of circumstellar dust in protoplanetary disks happens very rapidly (within a few Myr), or that this evolution is governed by factors other than stellar mass and age.Comment: 6 pages, 2 figures, accepted for publication in Astronomy & Astrophysic

    An emission ring at 20 microns around the HAEBE star AB Aurigae: unveiling the disc structure

    Get PDF
    Isolated HAEBE stars are believed to represent an intermediate stage of objects between young stellar objects surrounded by massive, optically thick, gaseous and dusty disks and Vega like stars surrounded by debris disks. The star AB Aur is already known for being surrounded by an intermediate-stage dust disk emitting a fairly large infrared and (sub-)millimetric excess. Until now, the outer disk structure has only been resolved at millimeter wavelengths and at optical wavelength coronographic imaging. We have obtained 20 microns images which show an unexpected ellipse-shaped disk structure in emission at a distance of about 260 AU from the central star. Large azimuthal asymmetries in brightness can be noticed and the center of the ellipse does not coincide with the star. A simple, pure geometrical model based on an emission ring of uniform surface brightness, but having an intrinsic eccentricity succeeds in fitting the observations. These observations give for the first time clues on a very peculiar structure of pre-main-sequence disk geometry, i.e. a non uniform increase in the disk thickness unlike the common usual sketch of a disk with a constant flaring angle. They provide also valuable informations on the disk inclination as well as its dust composition; at such a large distance from the star, only transient heating of very small particles can explain such a bright ring of emission at mid-infrared wavelengths. Finally, the increase of thickness inferred by the model could be caused by disk instabilities; the intrinsic eccentricity of the structure might be a clue to the presence of a massive body undetected yet
    corecore