217 research outputs found

    Meten, weten en de werkelijkheid!

    Get PDF

    Meten, weten en de werkelijkheid!

    Get PDF

    Future projections of river nutrient export to the global coastal ocean show persisting nitrogen and phosphorus distortion

    Get PDF
    Nitrogen (N) and phosphorus (P) from anthropogenic sources are needed to produce food for the growing world population. As a result, these nutrients can be found in nearly every water body across the globe. Not only nutrient loading is important but also the molar ratio and its deviation from the “natural” Redfield ratio. Here we show that rivers, which have more than 50% anthropogenic sources and at the same time elevated N:P ratios (> 25) contributed 36% to the total global N export to coastal waters in 2015. The five Shared Socioeconomic Pathways (SSP) were used in combination with the Representative Concentration Pathways climate scenarios to project river nutrient loadings for 2050. Future nutrient export is projected to decline in high-income countries (with N:P ratios exceeding Redfield). In Brazil, India and China, however, a decline of N:P is only the case in a scenario oriented toward sustainable development (SSP1). The human-dominated river N and P export with elevated N:P ratios will increase in all SSPs, except in SSP1 where it stabilizes. Integrated strategies for both N and P considering all relevant trade-offs and societal sectors are urgently needed to reduce the nutrient pressure on surface waters

    Lessons Learned from Telemonitoring in an Outpatient Bariatric Surgery Pathway-Secondary Outcomes of a Patient Preference Clinical Trial

    Get PDF
    Background: Remote monitoring is increasingly used to support postoperative care. This study aimed to describe the lessons learned from the use of telemonitoring in an outpatient bariatric surgery pathway. Materials and Methods: Patients were assigned based on their preference to an intervention cohort of same-day discharge after bariatric surgery. In total, 102 patients were monitored continuously for 7 days using a wearable monitoring device with a Continuous and Remote Early Warning Score–based notification protocol (CREWS). Outcome measures included missing data, course of postoperative heart and respiration rate, false positive notification and specificity analysis, and vital sign assessment during teleconsultation. Results: In 14.7% of the patients, data for heart rate was missing for &gt; 8 h. A day-night-rhythm of heart rate and respiration rate reappeared on average on postoperative day 2 with heart rate amplitude increasing after day 3. CREWS notification had a specificity of 98%. Of the 17 notifications, 70% was false positive. Half of them occurred between day 4 and 7 and were accompanied with surrounding reassuring values. Comparable postoperative complaints were encountered between patients with normal and deviated data. Conclusion: Telemonitoring after outpatient bariatric surgery is feasible. It supports clinical decisions, however does not replace nurse or physician care. Although infrequent, the false notification rate was high. We suggested additional contact may not be necessary when notifications occur after restoration of circadian rhythm or when surrounding reassuring vital signs are present. CREWS supports ruling out serious complications, what may reduce in-hospital re-evaluations. Following these lessons learned, increased patients’ comfort and decreased clinical workload could be expected. Trial Registration: ClinicalTrials.gov. Identifier: NCT04754893. Graphical Abstract: [Figure not available: see fulltext.]</p

    Prediction of postoperative patient deterioration and unanticipated intensive care unit admission using perioperative factors

    Get PDF
    BACKGROUND AND OBJECTIVES: Currently, no evidence-based criteria exist for decision making in the post anesthesia care unit (PACU). This could be valuable for the allocation of postoperative patients to the appropriate level of care and beneficial for patient outcomes such as unanticipated intensive care unit (ICU) admissions. The aim is to assess whether the inclusion of intra- and postoperative factors improves the prediction of postoperative patient deterioration and unanticipated ICU admissions. METHODS: A retrospective observational cohort study was performed between January 2013 and December 2017 in a tertiary Dutch hospital. All patients undergoing surgery in the study period were selected. Cardiothoracic surgeries, obstetric surgeries, catheterization lab procedures, electroconvulsive therapy, day care procedures, intravenous line interventions and patients under the age of 18 years were excluded. The primary outcome was unanticipated ICU admission. RESULTS: An unanticipated ICU admission complicated the recovery of 223 (0.9%) patients. These patients had higher hospital mortality rates (13.9% versus 0.2%, p&lt;0.001). Multivariable analysis resulted in predictors of unanticipated ICU admissions consisting of age, body mass index, general anesthesia in combination with epidural anesthesia, preoperative score, diabetes, administration of vasopressors, erythrocytes, duration of surgery and post anesthesia care unit stay, and vital parameters such as heart rate and oxygen saturation. The receiver operating characteristic curve of this model resulted in an area under the curve of 0.86 (95% CI 0.83-0.88). CONCLUSIONS: The prediction of unanticipated ICU admissions from electronic medical record data improved when the intra- and early postoperative factors were combined with preoperative patient factors. This emphasizes the need for clinical decision support tools in post anesthesia care units with regard to postoperative patient allocation.</p

    Soil chemistry aspects of predicting future phosphorus requirements in Sub-Saharan Africa

    Get PDF
    Phosphorus (P) is a finite resource and critical to plant growth and therefore food security. Regional‐ and continental‐scale studies propose how much P would be required to feed the world by 2050. These indicate that sub‐Saharan Africa soils have the highest soil P deficit globally. However, the spatial heterogeneity of the P deficit caused by heterogeneous soil chemistry in the continental scale has never been addressed. We provide a combination of a broadly adopted P‐sorption model that is integrated into a highly influential, large‐scale soil phosphorus cycling model. As a result, we show significant differences between the model outputs in both the soil‐P concentrations and total P required to produce future crops for the same predicted scenarios. These results indicate the importance of soil chemistry for soil‐nutrient modelling and highlight that previous influential studies may have overestimated P required. This is particularly the case in Somalia where conventional modelling predicts twice as much P required to 2050 as our new proposed model. Plain language summary Improving food security in Sub‐Saharan Africa over the coming decades requires a dramatic increase in agricultural yields. Global yield increase has been driven by, amongst other factors, the widespread use of fertilisers including phosphorus. The use of fertilisers in Sub‐Saharan Africa is often prohibitively expensive and thus the most efficient use of phosphorus should be targeted. Soil chemistry largely controls phosphorus efficiency in agriculture, for example iron and aluminium which exist naturally in soil reduce the availability of phosphate to plants. Yet soil chemistry has not been included in several influential large‐scale modelling studies which estimate phosphorus requirements in Sub‐Saharan Africa to 2050. In this study we show that predictions of phosphorus requirement to feed the population of Sub‐Saharan Africa to 2050 can significantly change if soil chemistry is included (e.g. Somalia with up to 50% difference). Our findings are a new step towards making predictive decision‐making tool for phosphorus fertiliser management in Sub‐Saharan Africa considering the variability of soil chemistry

    Exploring wastewater nitrogen and phosphorus flows in urban and rural areas in China for the period 1970 to 2015

    Get PDF
    China has experienced rapid population growth and increasing human N and P discharge from point sources. This paper presents a new spatial and temporal model-based, province-scale inventory of N and P in wastewater using detailed information on the location and functioning of 4436 WWTPs covering China for the period 1970–2015. China's nutrient discharge to surface water increased 22-fold from 177 to 3908 Gg N yr−1 and 29-fold from 20 to 577 Gg P yr−1 in urban areas between 1970 and 2015. The ten strongly urbanized and industrialized provinces along the Eastern coast contributed 43 % of China's total N and P discharge to surface water in 2015. At present, the contribution of rural areas to total wastewater discharge (2082 Gg N yr−1 and 434 Gg P yr−1) is 35 % for N and 43 % for P. The model approach and sensitivity analysis of this study indicate that policies aiming at improving water quality need to consider these regional differences, i.e., improvement of the wastewater treatment technology level in Eastern regions and increasing both the sewage connection and wastewater treatment in Central and Western regions

    Future global pig production systems according to the Shared Socioeconomic Pathways

    Get PDF
    peer-reviewedGlobal pork production has increased fourfold over the last 50 years and is expected to continue growing during the next three decades. This may have considerable implications for feed use, land requirements, and nitrogen emissions. To analyze the development of the pig production sector at the scale of world regions, we developed the IMAGE-Pig model to describe changes in feed demand, feed conversion ratios (FCRs), nitrogen use efficiency (NUE) and nitrogen excretion for backyard, intermediate and intensive systems during the past few decades as a basis to explore future scenarios. For each region and production system, total production, productive characteristics and dietary compositions were defined for the 1970–2005 period. The results show that due to the growing pork production total feed demand has increased by a factor of two (from 229 to 471Tg DM). This is despite the improvement of FCRs during the 1970–2005 period, which has reduced the feed use per kg of product. The increase of nitrogen use efficiency was slower than the improvement of FCRs due to increasing protein content in the feed rations. As a result, total N excretion increased by more than a factor of two in the 1970–2005 period (from 4.6 to 11.1 Tg N/year). For the period up to 2050, the Shared Socio-economic Pathways (SSPs) provide information on levels of human consumption, technical development and environmental awareness. The sustainability of pig production systems for the coming decades will be based not only on the expected efficiency improvements at the level of animal breeds, but also on four additional pillars: (i) use of alternative feed sources not competing with human food, (ii) reduction of the crude protein content in rations, (iii) the proper use of slurries as fertilizers through coupling of crop and livestock production and (iv) moderation of the human pork consumption
    • 

    corecore