20 research outputs found

    Population-Based Design of Mandibular Fixation Plates with Bone Quality and Morphology Considerations

    Get PDF
    In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method may enhance the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The computational method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. The method automatically derives the mandibular angle and the bone thickness and intensity values at the path of every screw from a set of computed tomography images. An optimization strategy is then used to optimize the two parameters of plate angle and screw position. The method was applied to two populations of different genders. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate (MODUS® TriLock® 2.0/2.3/2.5, Medartis AG, Basel, Switzerland). The proposed designs resulted in a statistically significant improvement in the available bone thickness when compared to the standard plate. There is a higher probability that the proposed implants cover areas of thicker cortical bone without compromising the bone mineral density around the screws. The obtained results allowed us to conclude that an angle and screw separation of 129° and 9mm for females and 121° and 10mm for males are more suitable designs than the commercially available 120° and 9m

    Comparative Evaluation of Pelvic Allograft Selection Methods

    Get PDF
    This paper presents a firsthand comparative evaluation of three different existing methods for selecting a suitable allograft from a bone storage bank. The three examined methods are manual selection, automatic volume-based registration, and automatic surface-based registration. Although the methods were originally published for different bones, they were adapted to be systematically applied on the same data set of hemi-pelvises. A thorough experiment was designed and applied in order to highlight the advantages and disadvantages of each method. The methods were applied on the whole pelvis and on smaller fragments, thus producing a realistic set of clinical scenarios. Clinically relevant criteria are used for the assessment such as surface distances and the quality of the junctions between the donor and the receptor. The obtained results showed that both automatic methods outperform the manual counterpart. Additional advantages of the surface-based method are in the lower computational time requirements and the greater contact surfaces where the donor meets the recipien

    Multicentre assessment of motor and sensory evoked potentials in multiple sclerosis : reliability and implications for clinical trials

    Get PDF
    Motor and sensory evoked potentials (EP) are potential candidate biomarkers for clinical trials in multiple sclerosis.; To determine test -retest reliability of motor EP (MEP) and sensory EP (SEP) and associated EP-scores in patients with multiple sclerosis.; In three centres, 16 relapsing and five progressive multiple sclerosis patients had MEPs and SEPs 1-29 days apart. Five neurophysiologists independently marked latencies by central reading. By variance component analysis, we estimated the critical difference (absolute reliability) for cross-sectional group comparison, comparison of longitudinal group changes, within-subject minimal detectable change and defined within-subject improvement.; Cortical SEP responses and cortico-muscular MEP latencies were more reliable than central conduction times. For comparison of 20 subjects per arm, cross-sectional group difference ranged from 0.7 to 3.9 ms and 1.1 to 1.7, group difference in longitudinal changes from 0.4 to 1.8 ms and 0.36 to 0.62, within-subject minimal detectable change from 1.2 to 5.8 ms and 1.2 to 2.0, within-subject improvement from 0.8 to 3.8ms and 0.8 to 1.3, for single EP modalities and EP scores, respectively.; Multicentre EP assessment with central EP reading is feasible and reliable. The critical difference is reasonably low to detect significant group changes and to define responders. The results support the concept of using EP and EP-scores as candidate response biomarkers for quantification of disease progression and for studying remyelination in multiple sclerosis

    Reproducibility of functional connectivity and graph measures based on the Phase Lag Index (PLI) and weighted Phase Lag Index (wPLI) derived from high resolution EEG

    Get PDF
    Functional connectivity (FC) and graph measures provide powerful means to analyze complex networks. The current study determines the inter-subject-variability using the coefficient of variation (CoV) and long-term test-retest-reliability (TRT) using the intra-class correlation coefficient (ICC) in 44 healthy subjects with 35 having a follow-up at years 1 and 2. FC was estimated from 256-channel-EEG by the phase-lag-index (PLI) and weighted PLI (wPLI) during an eyes-closed resting state condition. PLI quantifies the asymmetry of the distribution of instantaneous phase differences of two time-series and signifies, whether a consistent non-zero phase lag exists. WPLI extends the PLI by additionally accounting for the magnitude of the phase difference. Signal-space global and regional PLI/wPLI and weighted first-order graph measures, i.e. normalized clustering coefficient (gamma), normalized average path length (lambda), and the small-world-index (SWI) were calculated for theta-, alpha1-, alpha2- and beta-frequency bands. Inter-subject variability of global PLI was low to moderate over frequency bands (0.1

    Population-based design of mandibular fixation plates with bone quality and morphology considerations

    Get PDF
    In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method may enhance the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The computational method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. The method automatically derives the mandibular angle and the bone thickness and intensity values at the path of every screw from a set of computed tomography images. An optimization strategy is then used to optimize the two parameters of plate angle and screw position. The method was applied to two populations of different genders. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate (MODUS(®) TriLock(®) 2.0/2.3/2.5, Medartis AG, Basel, Switzerland). The proposed designs resulted in a statistically significant improvement in the available bone thickness when compared to the standard plate. There is a higher probability that the proposed implants cover areas of thicker cortical bone without compromising the bone mineral density around the screws. The obtained results allowed us to conclude that an angle and screw separation of 129° and 9 mm for females and 121° and 10 mm for males are more suitable designs than the commercially available 120° and 9 mm

    Comparative evaluation of pelvic allograft selection methods

    Get PDF
    This paper presents a firsthand comparative evaluation of three different existing methods for selecting a suitable allograft from a bone storage bank. The three examined methods are manual selection, automatic volume-based registration, and automatic surface-based registration. Although the methods were originally published for different bones, they were adapted to be systematically applied on the same data set of hemi-pelvises. A thorough experiment was designed and applied in order to highlight the advantages and disadvantages of each method. The methods were applied on the whole pelvis and on smaller fragments, thus producing a realistic set of clinical scenarios. Clinically relevant criteria are used for the assessment such as surface distances and the quality of the junctions between the donor and the receptor. The obtained results showed that both automatic methods outperform the manual counterpart. Additional advantages of the surface-based method are in the lower computational time requirements and the greater contact surfaces where the donor meets the recipient

    Correlation of EEG slowing with cognitive domains in nondemented patients with Parkinson's disease

    Get PDF
    &lt;b&gt;&lt;i&gt;Background:&lt;/i&gt;&lt;/b&gt; Cognitive deficits in Parkinson's disease (PD) are heterogeneous and can be classified into cognitive domains. Quantitative EEG is related to and predictive of cognitive status in PD. In this cross-sectional study, the relationship of cognitive domains and EEG slowing in PD patients without dementia is investigated. &lt;b&gt;&lt;i&gt;Methods:&lt;/i&gt;&lt;/b&gt; A total of 48 patients with idiopathic PD were neuropsychologically tested. Cognitive domain scores were calculated combining Z-scores of test variables. Slowing of EEG was measured with median EEG frequency. Linear regression was used for correlational analyses and to control for confounding factors. &lt;b&gt;&lt;i&gt;Results:&lt;/i&gt;&lt;/b&gt; EEG median frequency was significantly correlated to cognitive performance in most domains (episodic long-term memory, rho = 0.54; overall cognitive score, rho = 0.47; fluency, rho = 0.39; attention, rho = 0.37; executive function, rho = 0.34), but not to visuospatial functions and working memory. &lt;b&gt;&lt;i&gt;Conclusion:&lt;/i&gt;&lt;/b&gt; Global EEG slowing is a marker for overall cognitive impairment in PD and correlates with impairment in the domains attention, executive function, verbal fluency, and episodic long-term memory, but not with working memory and visuospatial functions. These disparate effects warrant further investigations.</jats:p

    Reliability of functional connectivity of EEG applying microstates-segmented versus classical calculation of phase lag index

    No full text
    Connectivity analysis characterizes normal and altered brain function, for example, using the phase lag index (PLI), which is based on phase relations. However, reliability of PLI over time is limited, especially for single- or regional-link analysis. One possible cause is repeated changes of network configuration during registration. These network changes may be associated with changes of the surface potential fields, which can be characterized by microstate analysis. Microstate analysis describes repeating periods of quasistable surface potential fields lasting in the subsecond time range. This study aims to describe a novel combination of PLI with microstate analysis (microstate-segmented PLI = msPLI) and to determine its impact on the reliability of single links, regional links, and derived graph measures. msPLI was calculated in a cohort of 34 healthy controls three times over 2 years. A fully automated processing of electroencephalography was used. Resulting connectomes were compared using Pearson correlation, and test-retest reliability (TRT reliability) was assessed using the intraclass correlation coefficient. msPLI resulted in higher TRT reliability than classical PLI analysis for single or regional links, average clustering coefficient, average shortest path length, and degree diversity. Combination of microstates and phase-derived connectivity measures such as PLI improves reliability of single-link, regional-link, and graph analysis

    Statismo - A framework for PCA based statistical models

    Get PDF
    This paper describes the Statismo framework, which is a framework for PCA based statistical models.Statistical models are used to describe the variability of an object within a population, learned from a set of training samples. Originally developed to model shapes, statistical models are now increasingly used to model the variation in different kind of data, such as for example images, volumetric meshes or deformation fields. Statismo has been developed with the following main goals in mind: 1) To provide generic tools for learning different kinds of PCA based statistical models, such as shape, appearance or deformations models. 2) To make the exchange of such models easier among different research groups and to improve the reproducibility of the models. 3) To allow for easy integration of new methods for model building into the framework. To achieve the first goal, we have abstracted all the aspects that are specific to a given model and data representation, into a user defined class. This does not only make it possible to use Statismo to create different kinds of PCA models, but also allows Statismo to be used with any toolkit and data format. To facilitate data exchange, Statismo defines a storage format based on HDF5, which includes all the information necessary to use the model, as well as meta-data about the model creation, which helps to make model building reproducible. The last goal is achieved by providing a clear separation between data management, model building and model representation. In addition to the standard method for building PCA models, Statismo already includes two recently proposed algorithms for building conditional models, as well as convenience tools for facilitating cross-validation studies. Although Statismo has been designed to be independent of a particular toolkit, special efforts have been made to make it directly useful for VTK and ITK. Besides supporting model building for most data representations used by VTK and ITK, it also provides an ITK transform class, which allows for the integration of Statismo with the ITK registration framework. This leverages the efforts from the ITK project to readily access powerful methods for model fitting
    corecore