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Marcel Lüthi1, Rémi Blanc2, Thomas Albrecht1, Tobias Gass3, Orcun Goksel3,
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Abstract

This paper describes the Statismo framework, which is a framework for PCA based statistical models.
Statistical models are used to describe the variability of an object within a population, learned from a
set of training samples. Originally developed to model shapes, statistical models are now increasingly
used to model the variation in different kind of data, such as for example images, volumetric meshes or
deformation fields.

Statismo has been developed with the following main goals in mind: 1) To provide generic tools
for learning different kinds of PCA based statistical models, such as shape, appearance or deformations
models. 2) To make the exchange of such models easier among different research groups and to improve
the reproducibility of the models. 3) To allow for easy integration of new methods for model building
into the framework. To achieve the first goal, we have abstracted all the aspects that are specific to
a given model and data representation, into a user defined class. This does not only make it possible
to use Statismo to create different kinds of PCA models, but also allows Statismo to be used with any
toolkit and data format. To facilitate data exchange, Statismo defines a storage format based on HDF5,
which includes all the information necessary to use the model, as well as meta-data about the model
creation, which helps to make model building reproducible. The last goal is achieved by providing a
clear separation between data management, model building and model representation. In addition to the
standard method for building PCA models, Statismo already includes two recently proposed algorithms
for building conditional models, as well as convenience tools for facilitating cross-validation studies.

Although Statismo has been designed to be independent of a particular toolkit, special efforts have
been made to make it directly useful for VTK and ITK. Besides supporting model building for most
data representations used by VTK and ITK, it also provides an ITK transform class, which allows for
the integration of Statismo with the ITK registration framework. This leverages the efforts from the ITK
project to readily access powerful methods for model fitting.
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1 Introduction

Statistical models have become a firmly established tool in computer vision and medical image analysis.
They model the variability of a class of objects by means of a normal distribution, learned from example
data. In particular in the form of shape models, they have been employed in a wide range of applications
such as object recognition [10, 20], image manipulation [8], surgery planning [24, 12] or implant design
[9, 15]. Furthermore, they have been used as a prior for different algorithms, such as segmentation [13] or
registration [2]. In spite of their success, there is still no established toolkit for the creation and application
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of such models. This requires the same method to be implemented over and over again. Moreover, it makes
the exchange of models difficult, and thus hinders the collaboration between different researchers as well
as the reproducibility of experiments. In this paper we introduce the Statismo framework, which is a C++
framework for the creation and use of different kinds of statistical models. In contrast to other libraries
(such as the statistical models currently implemented in ITK), Statismo provides a high-level interface:
Statistical models are interpreted as a probability distribution over the modeled object, from which samples
(i.e. shapes, images, etc.) can be drawn and probabilities of object instances can be computed. The current
implementation focuses on the most commonly used type of statistical models, i.e. PCA-based shape models,
and its associated statistical interpretation as a multivariate normal distribution.

The standard example for a statistical PCA model is the statistical shape model. It represents a class of
shapes in terms of deformations of a triangulated reference surface. Nevertheless, the concept can be applied
to various other types of data, such as images, displacements fields, volumetric meshes, etc. Independent
of the concrete type of model, the statistical analysis requires each dataset to be converted in to a vectorial
representation. Statismo provides a unified treatment of these models by letting the user provide special
template classes, so called Representer classes, which define this conversion. Depending on the type of data,
this may include preprocessing steps, such as establishing correspondence or alignment of the datasets. A
representer also provides the reverse functionality, to convert the vectorial representation back to its original
representation. The abstraction introduced by the Representer does not only allow for a unified treatment of
different kinds of PCA based models, but also to make Statismo independent of the library used to represent
the data. Thus, the exact same code that is used for creating a shape model from shapes represented in VTK
can also be used for creating deformation models from ITK displacement fields.

One of the main design goals of Statismo is to facilitate the exchange of statistical models among differ-
ent research groups and end users. We therefore defined a platform independent storage based on HDF5
[1]. Statismo stores all the information needed to capture the complete probabilistic interpretation of the
model. This requires in particular that all the pre-processing steps, such as alignment or normalization can
be reproduced. Statismo enforces this by requiring the same Representer to be used in the application of
the model, as was used for model building. Moreover, Statismo stores all the parameters and additional
metadata necessary to make the models more easily reproducible. Another goal of Statismo is to allow for
the easy integration of different model building algorithms. This is achieved by the modular design of the
data management, model building and model representation components. Thus, new algorithms for model
building can be easily integrated into Statismo and make use of all the functionality already implemented.
In addition to standard PCA models, Statismo currently supports the building of conditional models based
on surrogate variables [4, 7], as well as geometric constraints [16].

Statismo includes standard Representers for the most commonly used data representations in VTK and ITK,
making it possible to build and exchange PCA based shape models, image models, and deformation models,
using both ITK and VTK. Statismo also provides wrapper classes that allow for the seamless integration of
Statismo into ITK. Furthermore, a special itkTransform class is provided, which makes it possible to exploit
the power of the ITK Registration Framework for statistical model fitting.

2 Background: PCA based statistical models

2.1 General Introduction

The idea behind PCA Models is to learn a (linear) model for an object class from a set of typical example
of this class. Let O = {O1, . . . ,On} be a set of training examples. These objects can for example be images,
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2.1 General Introduction 4

deformation fields or shapes. Model building consists of the following three steps:

1) Discretization: This aims to define a discrete domain Ω = {p1, . . . , pN} on which we approximate all the
objects, i.e. we define an object as:

Ôi = (ϕi(p1), . . . ,ϕ
i(pN)), i = 1 . . . ,n.

For shape models, the domain Ω ⊂ R3 is usually defined by the points of a 3D reference mesh and ϕi :
R3→R3 is a function that maps each point p j ∈Ω to the corresponding point of an example shape Ôi. For
images, Ω is an image domain and ϕi : Ω→R that assigns to each point its image intensity. Similarly, for
deformation models, ϕi : Ω→ Rd assigns to each point a deformation that is defined on the deformation
field Ôi.

Note that this definition implies correspondence between all the examples. The exact notion of correspon-
dence depends on the type of both the objects and the application. The correspondence between the examples
is usually established through registration.

2) Normalization: Depending on the type of the objects, further preprocessing steps may follow. Shapes,
for example, are usually rigidly aligned using Procrustes registration before building the model. For images,
a histogram equalization or a low pass filtering may be performed to reduce the excess variability of the
samples.

3) Model building: Once the shapes are processed, each object Oi can be represented as a high-dimensional
vector

vi = (ϕi(p1), . . . ,ϕ
i(pN)) ∈RN·d .

PCA estimates an orthonormal basis spanning this high-dimensional space, defined iteratively as the direc-
tions onto which the projection of the data has maximum variance. This offers the opportunity to reduce
the dimensionality of the model, keeping only the principal directions covering a prescribed proportion of
the total data variability. Mathematically, these are obtained from the sample mean and sample covariance
matrix of the training data, using the usual formula from statistics:

m =
1
n

n

∑
i=1

vi

S =
1

n−1

n

∑
i=1

(vi−m)(vi−m)T .

(1)

Using singular value decomposition, the sample Covariance Matrix is decomposed as S = UD2UT . The
column ui of the matrix U ∈RNd×n is referred to as the i-th principal component. The principal components
form a basis for the vector space in which all the examples are defined. An entry λi in the diagonal matrix
D2 = diag(λ1, . . . ,λn) denotes how much variance is represented by the i-th principal component [18]. A
statistical model v is then defined as the low dimensional generative model:

v = v(α1, . . . ,αm) = m+
m

∑
i=1

αiλiui,

where m< n is the number of principal components that span the model space. Each vector α= (α1, . . . ,αm)
introduces a unique shape. Usually it is assumed that α follows a standard normal distribution:

α∼N (0, Im) (2)
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2.2 Probabilistic PCA 5

This in turn introduces a probability distribution over the discretized vectors representing the objects, namely

v∼N (m,UD2UT )≈N (m,S). (3)

2.2 Probabilistic PCA

In section 2.1 we have sketched the fundamentals of PCA based statistical modeling as it is commonly
presented and used in the literature. There is, however, a flaw with this simple probabilistic interpretation
(Cf. Equations (2) and (3)). This model assumes that all the probability mass is concentrated on the subspace
spanned by the principal components. Thus the probability of an object that does not strictly lie in this
subspace is zero. In practice, however, an object might be a valid and likely instance of the class and still
not lie exactly on that subspace. This may on one hand happen since this subspace is only approximated
from a finite number of examples, but also because the data itself is usually noisy. To alleviate this problem,
Probabilistic PCA (PPCA) [23] is implemented in Statismo. PPCA provides a well defined probabilistic
interpretation, by assuming a small amount of noise on the examples. The new generative model is of the
form

v = v(α1, . . . ,αn) = m+
n

∑
i=1

αiλiui + ε

with ε∼N (0,σ2). By virtue of the added noise term, this model now defines a valid probability distribution
on the whole of RNd . The probability of an instance now depends on the distance from this subspace, i.e.
the objects that are far away are less likely than those instances that are closer to the space. It can be shown
that when σ2 goes to 0 a standard PCA model is obtained [22].

3 Design / Architecture

Statismo has been designed to achieve the following goals:

High level: Most applications using statistical models exploit the fact that these models define a probability
distribution over the objects of interest. The interface of Statismo is designed to reflect this fact
and provides high-level methods to work with the represented distribution, rather than exposing the
eigenvalues and eigenvectors of the model.

Independence of data representation: Statistical models are used to model the variation in various types
of objects, using a variety of different toolkits to represent the data. Independently of the concrete
representation of the data, the ideas and interpretation of PCA-based statistical models is always
the same. Statismo is designed to work for any kind of PCA models, independently of the data
representation or the toolkit used.

Reproducibility and easy data exchange: It is often fruitful to exchange data and models with colleagues
or other researchers. An important design goal is to facilitate this exchange by providing a platform in-
dependent data format, which contain all the information needed to use the model from an application.
Furthermore, to help reproduce an experiment, the stored model should contain all the parameters that
were used to build the model.

Flexibility and Extensibility: Statismo aims to simplify the integration of new algorithms for model build-
ing. This will not only increase the usefulness of Statismo itself, but also will allow such algorithms
to benefit from the functionalities implemented in Statismo.
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3.1 Design overview 6

Figure 1: The core classes in Statismo

3.1 Design overview

To ensure flexibility and extensibility, Statismo uses a modular structure that clearly separates data man-
agement, model building and model representation. Figure 1 shows a class diagram of Statismo. The data
used to build the model is added to the data manager DataManager class, via the AddDataset method.
This method first preprocesses (e.g. aligns and normalizes) the dataset and converts it into an internal vec-
torial representation, which is stored together with metadata, such as the file name of the dataset. These
preprocessed datasets are referred to as samples. The ModelBuilder class takes a list of samples and uses
it to build a statistical model. The ModelBuilder class is also responsible for collecting all the metadata
associated with the samples, which are then stored together with additional information set by the model
builder (such as the build time, parameter settings, etc.) in the ModelInfo class. The StatisticalModel
class resulting from the ModelBuilder can now be used independently of the other classes. It contains
all the information needed in the application of a statistical model and accordingly is saved in a platform
independent storage format based on HDF5.

Most terminology used in Statismo is directly motivated by the probabilistic interpretation, and does not
require further clarification. However, while in statistics the term sample and dataset are usually used inter-
changeably, in Statismo these terms have precise meanings. A dataset is a representation of an object used as
an input to build the model. A sample represents the same object but after discretization and normalization
have been applied to it (Cf. Section 2.1). It is an instance of the object as it is represented by the model.
In other words, the probability distribution defined by the statistical model represents the probability of the
samples but not of the datasets. Finally, a sample vector is the representation of a sample as a vector.

3.2 Representers

The key concept that allows Statismo to be independent of a specific data representation, and to build all
types of PCA models is the concept of a Representer. Every class in Statismo is parametrized over a
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3.3 ITK Support 7

Figure 2: The dataflow in Statismo. Inputs to Statismo are datasets, in a user defined data representation. The output
is always a sample from the probability distribution over the objects that are modeled.

user-defined Representer class. A Representer class has two distinct purposes: First, it is used as an
adapter class to convert between the data representations used by an application and the internal represen-
tation used by Statismo. This allows Statismo to be used with a variety of different toolkits. Second, it
also defines how the objects are processed before they are used for building the model. Recall from Sec-
tion 2.1 that before a model is built, objects are discretized, normalized and converted into a consistent
vectorial form. The discretization and normalization step are specific to the type of object that are mod-
eled. A Representer class in Statismo needs to provide the methods Representer::DatasetToSample,
Representer::SampleToSampleVector and Representer::SampleVectorToSample. The first method
takes care of the discretization and normalization, the second method is used to convert a dataset to its vec-
torial representation. The last method is used to convert the vectorial representation back to an object of the
modeled type. Figure 2 illustrates this concept. The input to Statismo is always a dataset. This is converted
into a sample, and then in its vectorial representation, from which all the statistics is computed. Note that
the vectorial representation is never exposed to the user, but it is always converted back to the sample rep-
resentation. For shape models, for instance, the output sample is a mesh, in the specific data representation
used by the Representer.

3.3 ITK Support

Statismo was designed to work together with different toolkits and libraries. It was therefore not possible to
follow the conventions of a specific toolkit. To facilitate the integration with other libraries, we have tried
to make as few assumptions as possible, and limit the interface to use standard C++. Using the generic
Statismo interface, a code snippet to load a model looks like
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statismo::StatisticalModel<RepresenterType>* model =
statismo::StatisticalModel<RepresenterType>::Load("model.h5");

SampleType* sample = model->DrawSample();
delete model;

Nevertheless, ITK being a major focus of Statismo, we provide special wrappers that follow the ITK con-
ventions and provide a seamless integration of Statismo in ITK. Accordingly, the same code snippet will
look like

itk::StatisticalModel<RepresenterType>::Pointer model =
itk::StatisticalModel<RepresenterType>::New();

model->Load("model.h5");
SampleType::Pointer sample = model->DrawSample();

The main difference between the two interfaces is that the former generic Statismo interface requires all
arguments as the object is created (here with the Load function) and thus ensures that the objects themselves
are well defined after construction. The memory management is done manually whereas, with the ITK
Wrapper, the memory is managed using the ITK smart pointers.

Specifically for ITK, Statismo also provides a class itk::StatisticalModelTransform, which enables
the use of statistical models as ITK transforms. This has great practical value since these transform can then
be used in the ITK registration framework for statistical model fitting.

4 Using Statismo

In this section we illustrate how Statismo can be used to perform typical tasks related with statistical models:

1. Generation and storage of a statistical model

2. Loading a model from disk

3. Visualizing the variability in a model

4. computing the likelihood of a dataset

5. performing a cross-validation experiment

6. using the ITK registration framework for model fitting.

Most examples below use the generic interface with the vtkPolyDataRepresenter. This representer is
created by providing it with a reference dataset that defines the discretization and mesh topology. Before
converting a dataset to its vectorial representation, it performs a Procrustes alignment [14] of the dataset to
the reference, and thus normalizes pose variations automatically. Note that this representer assumes, that the
datasets are already in correspondence. The last example illustrates the use of Statismo with the ITK registra-
tion framework and makes use of the ITK Wrappers for statismo. For this we use the itkMeshRepresenter
that represents datasets of type itk::Mesh.

The illustrations shown in this section have been obtained from a model built from 6 femur bones, which
are distributed along with this article.1

1The example data has been provided by the Virtual Skeleton Database (VSD) project. A larger collection of example data is
available at http://www.virtualskeleton.ch
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4.1 Building statistical models in Statismo

The first step in using Statismo is to define which representer is used and to parametrize all classes with that
representer.

typedef vtkPolyDataRepresenter RepresenterType;
typedef PCAModelBuilder<RepresenterType> ModelBuilderType;
typedef StatisticalModel<RepresenterType> StatisticalModelType;
typedef DataManager<RepresenterType> DataManagerType;

We create a representer and provide it with a reference. As we are using the vtkPolyDataRepresenter,
the reference is in this case a vtkPolyData object. Furthermore, we load all the datasets that we wish to use
in our model.

vtkPolyData* reference = loadVTKPolyData("referenceFilename.vtk");
RepresenterType::Pointer representer = RepresenterType::create(reference);

vtkPolyData* dataset_1 = loadVTKPolyData(path_to_polydata_1);
...
vtkPolyData* dataset_n = loadVTKPolyData(path_to_polydata_n);

These datasets are then added to the DataManager. Note that we also need to provide the path of the dataset
as a second argument to the AddDataset function. This information will be written as metadata for later
reference.

DataManagerType* dataManager = DataManagerType::Create(representer);
dataManager->AddDataset(dataset_1, path_to_polydata_1);
...
dataManager->AddDataset(dataset_n, path_to_polydata_n);

In the next step we build a model and save it as a HDF5 file.

ModelBuilderType* pcaModelBuilder = ModelBuilderType::Create(representer);
StatisticalModelType* model =

pcaModelBuilder->BuildNewModel(dataManager->GetSampleData(), 0.01);
model->Save("model.h5");

At the end we need to delete the created Statismo objects (an alternative would, of course, be to use smart
pointers).

delete model;
delete pcaModelBuilder;
delete dataManager;

4.2 Loading a model

In most applications, the first step is not to build a model, but to load an exisiting model. A model is loaded
using
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typedef vtkPolyDataRepresenter RepresenterType;
typedef itk::StatisticalModel<RepresenterType> StatisticalModelType;
StatisticalModelType* model = StatisticalModelType.Load("model.h5");

This restores the full model, including the representer. We stress however, that it is important that the same
type of representer is used when loading the model, as the one that was used to build the model. Statismo
will throw an exception if this is not the case.

4.3 Visualizing the variability

Probably the first and simplest application that is performed with a new model is to visualize the variability
of the modeled objects. This can easily be achieved by drawing random samples and visualizing them using
standard tools (such as e.g. Paraview).2

vtkPolyData* sample = model->DrawSample()

We can also explore the shape space more systematically by specifying the PCA coefficients for a given
sample. In this example, we obtain three samples: The mean, a sample corresponding to 3 standard-deviation
in the direction of the first principal component and one corresonding to 3 standard-deviation in the opposite
direction.

vtkPolyData* mean = model->DrawMean()
VectorType coeffs = VectorType::Zeros(model->GetNumberOfPrincipalComponents());
coeffs[0] = 3;
vtkPolyData* sample1PC1 = model->DrawSample(coeffs);
coeffs[0] = -3;
vtkPolyData* sample2PC1 = model->DrawSample(coeffs);

Note that each call to DrawSample create a new sample which needs to be deleted by the user.

4.4 Using statistical models as a prior

In many algorithms, statistical models are used as a shape prior. A common approach is to take an instance
from an algorithm, and project it back into the shape space, to get an approximation of the given shape. In
Statismo, such a projection can be obtained by computing the PCA coefficients for a given dataset and then
restoring it using the DrawSample method:

vtkPolyData* dataset = someAlgorithm();
VectorType coeffs = model->ComputeCoefficientsForDataset(dataset);
vtkPolyData* projection = model->DrawSample(coeffs);

Often, an algorithm is regularized by penalizing unlikely solutions. For this purpose, Statismo provides a
method to compute a (log) probability of a given dataset.

float logProbability = model->ComputeLogProbabilityForDataset(aDataset);

2Note that the samples are drawn from the multivariate normal distribution that the model represents.
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−3σ mean +3σ

Figure 3: The first mode of variation (±3 standard deviations) for a shape model of the femur. In this case the first
variation mainly captures the size of the bone.

4.5 Cross validation

An often neglected, but important task is the evaluation of statistical models. One particular focus of interest
is the generalization ability of a model: the accuracy with which it is able to represent new instances of the
object. This ability may be estimated through cross-validation studies. Cross-validation has also recently
been employed to derive confidence bounds quantifying the reliability of statistical model based prediction
from partial observations [5, 6]. Statismo provides convenience functionalities in order to facilitate such
cross-validation studies.

Cross-validation is done using the DataManager. After we have set up the DataManager, and populated it
with the training data, we can obtain a list with cross validation folds.

typedef DataManagerType::CrossValidationFoldListType CVFoldListType;
CVFoldListType cvFoldList = dataManager->GetCrossValidationFolds(4, true);

Each entry of the cvFoldList contains a list of training samples and a list with the test samples. We iterate
over all the folds and build for each fold a new model. A typical validation of the model would consist of
computing an approximation error between the test sample, and its projection in the model.

for (CVFoldListType::const_iterator it = cvFoldList.begin();
it != cvFoldList.end();
++it)

{
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ModelBuilderType* builder = ModelBuilderType::Create();
StatisticalModelType* model(builder->BuildNewModel(it->GetTrainingData(), 0.01));

const SampleDataListType testSamplesList = it->GetTestingData();
for (SampleDataListType::const_iterator it = testSamplesList.begin();

it != testSamplesList.end()
++it)

{
vtkPolyData* testSample = (*it)->GetAsNewSample();
vtkPolyData* projection = model->DrawSample(

model->ComputeCoefficientsForDataset(dataset));
/// here we could for example compute the approximation error between the
/// projection and the test sample - omitted

testSample->Delete();
}
delete modelBuilder;

}

4.6 Model Fitting using the itk registration framework

One of the most common applications of statistical models is to fit them to a patient dataset. In Statismo
this is done using the ITK registration framework. In the example we show how a shape model is fitted to
an image using itkPointSetToImageMetric. In this example, we use the ITK wrapper of Statismo, which
allows us to use Statismo objects as normal ITK objects.

We start with the usual type definitions. We use for this example a shape model, which has been built using
the itkMeshRepresenter.

typedef itk::Mesh<float, 3> MeshType;
typedef itk::ImageType<float, 3> ImageType
typedef itk::MeshRepresenter<float, 3> RepresenterType;
typedef itk::StatisticalShapeModelTransform<RepresenterType, double, 3> TransformType;
typedef itk::MeanSquaresPointSetToImageMetric<MeshType, ImageType> MetricType;

The StatisticalShapeModelTransform is a class defined by Statismo. It is a subclass of the itk::Transform
and can thus be directly used wherever an itk::Transform is expected.

In the next step we load the model and obtain the reference mesh that was used to build the model via the
representer. This mesh is used by the PointSetToImageMetric, and determines the points on which the
metric is evaluated.

StatisticalModelType::Pointer model = StatisticalModelType::New();
model->Load(modelname);
MeshType::Pointer fixedPointSet = model->GetRepresenter()->GetReference();

The transform is set up by setting the statistical model, and initializing it to the identity transform.
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TransformType::Pointer transform = TransformType::New();
transform->SetStatisticalModel(model);
transform->SetIdentity();

The registration is then set up in the usual way. We omit here the details.

MetricType::Pointer metric = MetricType::New()
...

RegistrationFilterType::Pointer registration = RegistrationFilterType::New();
registration->SetInitialTransformParameters(transform->GetParameters());
registration->SetTransform( transform );
registration->SetFixedPointSet( fixedPointSet );
...
registration->Update()

After a successful registration, the transform parameters correspond to the PCA coefficients in our
model. To obtain the final mesh, we can obtain these coefficients from the transform using the method
GetCoefficients and draw the corresponding sample from the model.

MeshType::Pointer finalMesh = model->DrawSample(transform->GetCoefficients());

5 Adding more prior information: Constrained PCA models

One goal of Statismo is to allow the integration of different algorithms for building statistical mod-
els. Currently, Statismo comes with three different methods to build statistical models (Cf. Figure 1).
Besides the standard PCAModelBuidler that was used in all the examples presented so far, there is a
PartiallyFixedModelBuilder [16] and a ConditionalModelBuilder [4]. Both model builders incor-
porate additional prior information into the model building and thus reduce the variability of the resulting
model. The resulting models are standard PCA models themselves, and can be used and interpreted in
exactly the same way as the models discussed so far.

5.1 Partially fixed models

Partially fixed models allow for introducing geometric constraints on the model. This allows us to model
the variability in a model, when we know the shape for a part of the model. A typical application of
this model is the reconstruction of a fractured or traumatized bone. Another scenario where these mod-
els are useful is in model fitting. Consider the shape model fitting example from Section 4.6. Assume
that we know for some points of the model the corresponding points on the target image. Using the
PartiallyFixedModelBuilder, we can incorporate these constraints into the model building, to obtain
a model that represents only shapes that match the target points. The following (incomplete) code illustrates
how such models can be built.

// ... usual type definitions - omitted
typedef PartiallyFixedModelBuilder<RepresenterType> PartiallyFixedModelBuilderType;

Latest version available at the Insight Journal [ http://hdl.handle.net/10380/3371]
Distributed under Creative Commons Attribution License

http://www.insight-journal.org
http://hdl.handle.net/10380/3371
http://creativecommons.org/licenses/by/3.0/us/


5.1 Partially fixed models 14

−3σ mean +3σ

Figure 4: A shape model of the femur, with two landmark points (in red) fixed. As the landmark points determine the
size of the femur the first component is not the size anymore (as in 3), but shows mainly the variations of the femoral
head and the condyles.

PartiallyFixedModelBuilderType* pfmb = PartiallyFixedModelBuilderType::Create();

// ... Read model and target landmarks, omitted

StatisticalModelType::PointValueListType constraints;
for (unsigned i = 0; i < numLandmarks; i++) {

StatisticalModelType::PointValuePairType cnstr(modelLandmarks[i], targetLandmarks[i]);
constraints.push_back(cnstr);

}
StatisticalModelType* constraintModel =

pfmb->BuildNewModel(dataManager->GetSampleData(), constraints);

Figure 4 shows the first main variation for the same shape model as in Figure 3, but this time with 2 points
(in red) fixed. We see that the landmark points remain fixed in the first main variation. By using this
constrained model for model fitting, we can thus guarantee that the landmark points are matched, without
having to change our fitting algorithm. An additional advantage is that the search space becomes smaller, and
thus the optimization problem easier. For more details on the theoretical background and the applications of
these models, we refer to the papers [16, 17].
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5.2 Conditional Models

The second algorithm for model building, which we refer to as the ConditionalModelBuilder for constrained
model is used when there are additional surrogate information about the data available. The underlying
idea is to exploit such information to generate a statistical model of the object variability given prescribed
constraints. Statismo handles both continuous and categorical types of surrogates (e.g. the height, age and
gender of the patient). To achieve this, the potential useful surrogate variables have to be associated to the
training samples.

A special DataManagerWithSurrogates is provided for this purpose. When creating such a data manager,
a file describing the number and types of variables is passed as an argument. The class has a special method
to add datasets together with the associated surrogate data: AddDatasetWithSurrogates(dataset,
surrogateFilename) (the exact format of these input files is described in the internal documentation).

In order to learn a conditional model, the user then specifies which of surrogate variables are used for con-
ditioning, and specifies the corresponding values against which the model should be conditioned by filling
a structure of type ConditionalModelBuilder<RepresenterType>::CondVariableValueVectorType.

In this implementation, only the training samples which respect the requested categories are selected. Con-
tinuous variables are used to learn a conditional distribution of the variability, using the assumption of joint
multivariate normality. Practically speaking, an unconditional statistical model is first learned using the
PCAModelBuilder class using the selected training sample. The PCA coefficients of each of these training
samples are computed, and pooled with the requested continuous surrogates. The conditional distribution
of the model coefficient given the prescribed constraints is derived. The assumption of multivariate nor-
mality then allows to reformulate this conditional model in the reduced space back into the original high
dimensional space. Therefore, the obtained conditional model is expressed in the exact same mathematical
formulation as standard PCA models. The implementation is currently limited to cases where the number
of retained training samples (after selection based on categories) is larger than the number of original PCA
coefficients retained plus the number of continuous surrogate variables used as conditions.

More details, and possible extension to more complex distributions models can be found in [4].

6 Conclusion

In this paper we have presented Statismo, which is a framework for PCA based statistical models. Statismo
implements a high level view on PCA models by interpreting these models as a normal distribution over
the modeled objects. The underlying low level vectorial representation of an object is never exposed to the
user. The conversion between the data representation of the user and the vectorial representation used by
Statismo is done via special Representer classes, which are defined for each data representation. This allows
Statismo to ensure that the same discretization and normalization steps are applied when using the model,
as those that were used during the model building. A statistical model in Statismo thus always has a well
defined interpretation and semantics. This, together with the fact that Statismo writes all its information into
a single, portable HDF5 file, greatly simplifies the exchange of statistical models built with Statismo. To use
the model, the user only needs to have access to the same Representer that was used to build the model.

Statismo comes with ready made Representer classes for the most important object representations used
in VTK and ITK. Currently all these representers require that the data is already in correspondence. It is,
however, straight-forward to write representers that also establish correspondence, and thus to cover the
full model creation pipeline with Statismo. By writing custom representers, it becomes also possible to
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use Statismo with other toolkits than ITK or VTK. Statismo also simplifies the integration of new methods
for building models. As it is a powerful toolkit for building statistical models, we hope that the number
of different representers and model builders for Statismo will grow quickly, enabling its use in several
applications across various fields.

A Appendix

A.1 The file format

Statismo uses the platform independent HDF5 [1] to save the statistical models. The HDF5 file contains all
the information that is needed to use the model from an application as well as information about the data
and parameters used to create the model. HDF5 provides a hierarchical, file-system like data organization.
For Statismo, we have organized the data into 3 main groups:

Model Contains the vectors and matrices that define the model, i.e. the mean, the pcaBasis, the
pcaVariance as well as the noiseVariance assumed in the model.

Modelinfo Holds the metadata for the model. The metadata consists of the buildtime of the model,
the scores (the PCA coefficients of the original example data), a section using builderInfo that
contains all the parameters of the specific model builder used to build the model, as well as a section
dataInfo that contains the URI’s of the datasets that have been used to build the model.

Representer This group is used to store all the information that is needed by the representer.

The data stored in the HDF5 file can eihter be explored using the API provided by Statismo (Cf. the class
StatisticalModel), or directly from one of the many software packages that support HDF5, such as e.g.
Matlab [19], R [21] or Pytables [3].

A.2 Currently available Representers

Statismo comes with several Representer classes for building various types of statistical models, using VTK
and ITK. Currently, all the representers requires that the input datasets are discretized in the same way and
in correspondence.

In the following we briefly describe the different Representers:

TrivialVectorialRepresenter This is the most basic representers. It can be used to build statistical models
in the case where the input is already available in a vector representation.

vtkPolyDataRepresenters Used to build shape models from VTK, in case where the data is represented
as VTK Polydata. This representer performs a Procrustes alignment [14] of the datasets before the
model is built.

vtkStructuredPointsRepresenter This representer is used to build image (intensity) models and deforma-
tion models from data that is represented as vtkStructuredPoints.

itkMeshRepresenter This representer is used to build shape models from itk Meshes. In contrast to the
vtkPolyDataRepresenter, no alignment is performed.
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itkImageRepresenter Used to build 2D and 3D image (intensity) models from itk images.

itkVectorImageRepresenter Used to build 2D and 3D deformation models from itk displacement fields.

itkVectorImageLMAlignRepresenter This representer is similar to the itkVectorImageRepresenter. In
addition, the user can provide a number of landmark points. the input displacement fields are eval-
uated at these landmark points, to obtain a set of corresponding points. From these points, a rigid
transformation is computed, which is used to resample the displacement fields.

A.3 Third Party libraries used in Statismo

Statismo depends on a number of open source libraries: HDF5 [1] is used to store the statistical models. For
linear algebra we use the Eigen template library [11]. Furthermore, Boost.tr1 was used to make TR1 avail-
able on all platforms. All the libraries are distributed along with Statismo. Detailed information regarding
the license terms of the different libraries can be found in the source tree.
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