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Abstract

Functional connectivity (FC) and graph measures provide powerful means to analyze complex networks. The current study
determines the inter-subject-variability using the coefficient of variation (CoV) and long-term test-retest-reliability (TRT)
using the intra-class correlation coefficient (ICC) in 44 healthy subjects with 35 having a follow-up at years 1 and 2. FC was
estimated from 256-channel-EEG by the phase-lag-index (PLI) and weighted PLI (wPLI) during an eyes-closed resting state
condition. PLI quantifies the asymmetry of the distribution of instantaneous phase differences of two time-series and
signifies, whether a consistent non-zero phase lag exists. WPLI extends the PLI by additionally accounting for the magnitude
of the phase difference. Signal-space global and regional PLI/wPLI and weighted first-order graph measures, i.e. normalized
clustering coefficient (gamma), normalized average path length (lambda), and the small-world-index (SWI) were calculated
for theta-, alpha1-, alpha2- and beta-frequency bands. Inter-subject variability of global PLI was low to moderate over
frequency bands (0.12,CoV,0.28), higher for wPLI (0.25,CoV,0.55) and very low for gamma, lambda and SWI (CoV,
0.048). TRT was good to excellent for global PLI/wPLI (0.68,ICC,0.80), regional PLI/wPLI (0.58,ICC,0.77), and fair to good
for graph measures (0.32,ICC,0.73) except wPLI-based lambda in alpha1 (ICC = 0.12). Inter-electrode distance correlated
very weakly with inter-electrode PLI (20.06,rho,0) and weakly with inter-electrode wPLI (20.22,rho,20.18). Global PLI/
wPLI and topographic connectivity patterns differed between frequency bands, and all individual networks showed a small-
world-configuration. PLI/wPLI based network characterization derived from high-resolution EEG has apparently good
reliability, which is one important requirement for longitudinal studies exploring the effects of chronic brain diseases over
several years.
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Introduction

Functional connectivity (FC), graph and nodal network

measures are powerful tools to characterize brain function in

healthy subjects as well as in neurological and psychiatric diseases

[1,2,3]. Based on the concept of the brain as a large complex

network of interconnected elements [4], different brain regions

interact in the resting state as well as in response to a stimulus or

task by synchronization of oscillatory activity [5,6]. Besides

structural and functional MRI, magneto- and electro-encephalog-

raphy (MEG/EEG) have been used to determine FC [7,8].

Scalp signals of EEG are an admix of source activity, volume

conduction, i.e. the spatial spread of the electric field during its

way from its source through the cerebro-spinal fluid and skull [9],

and the influence of the reference electrode [10]. These latter two

properties may artificially induce FC as the same signal is

measured at different electrodes [11]. In order to circumvent

these problems, measures as the imaginary coherence [11] and the

phase-lag-index (PLI) [8] have been proposed. The FC estimation

by the PLI is based on a consistent lag between the instantaneous

phases of two electrodes and is less sensitive to zero-lag phase-

relations typical for common sources. The weighted PLI (wPLI) is

an extension to the PLI and is reported to be less sensitive to noise

[12].

Graph theory provides metrics to characterize complex

networks [2,13]. Based on the functional connectivity matrix,

indices of functional segregation and integration have been

established [14]. Two basic measures are the clustering coefficient
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describing the connectedness of direct neighbors of a node and the

minimum path length describing the average minimal distance of

a node to all other nodes in the network. The ratio between the

mean normalized clustering coefficient and mean normalized path

length indicates whether a network displays an efficient small-

world-configuration; i.e. a combination of high local connected-

ness and short paths to all other nodes in the network minimizing

costs for information processing [15].

In order to be useful for characterizing disease states and for

capturing disease progression, FC estimates and graph measures

should have low inter-subject variability and high test-retest-

reliability (TRT) in healthy controls. Only few studies reported on

these properties so far, mainly at short-term retest intervals of

several weeks. Using MEG and mutual information (MI) as the

measure of FC, Deuker et al. [16] reported good TRT for FC and

moderate to good TRT for graph measures in the delta to beta-

band during an n-back task and considerably lower TRT during

an eyes-open resting state condition. Also using MEG and MI, Jin

et al. [17] found moderate to good TRT for nodal network

measures in eyes-open and eyes-closed resting state, respectively.

The current study reports on the inter-subject variability and

long-term test-retest-reliability of the PLI and the wPLI (PLI/

wPLI) derived from high-resolution eyes-closed resting state EEG

and of first-order graph measures in the signal-space. Additionally,

the relation between inter-electrode distance and PLI/wPLI is

explored to empirically probe susceptibility to volume conduction;

furthermore, the PLI/wPLI connectomes are displayed.

Material and Methods

Subjects
The study was approved by the local ethics committee

(Ethikkommission beider Basel, Basel; Switzerland; EK 74/09),

and all participants gave written informed consent before study

inclusion. At baseline, 48 healthy subjects (median age: 36.0 years,

range: 20.0–49.5; female: 73%) were examined. Inclusion criteria

comprised unremarkable personal history, normal neurological

exam and an EEG-recording without pathological alterations as

judged from clinical EEG reading; no concurrent medical

treatment was allowed. Four subjects had to be excluded from

analysis due to artifactual or low-voltage EEG signal. Thirty-five

subjects had a follow-up after one and two years with technically

satisfying EEGs.

EEG recording
Subjects were seated comfortably in a reclining chair in a dimly

lit, sound attenuated and electromagnetically shielded room. They

were instructed to relax, but to stay awake and to minimize eye

and body movements. A continuous EEG during an eyes-closed

resting state condition was recorded for 12 min with a 256-

channel EEG system (Netstation 200 with HydroCel Geodesic

Sensor Net, Electrical Geodesics, Inc., Oregon, USA). The

electrode net was placed with Fz, Cz, Oz, and the preauricular

points as landmarks. Electrode impedances were kept below

40 kOhm. Recording band-pass was 0.1–100 Hz, sampling

frequency 1 kHz, and the vertex was used as the recording

reference. During data acquisition, a subset of electrodes was

monitored online to check for vigilance and artifacts by a

technician. Inter-electrode distances were calculated based on a

template electrodes cap with dimensions 15.3619.5619.3 cm.

EEG processing
Several semi-automated, visually controlled pre-processing steps

were employed using customized MATLAB code optimized for

epoch selection in resting-state EEG (TAPEEG, https://sites.

google.com/site/tapeeg/[18]). In brief, all EEG were first visually

inspected by an experienced neurophysiologist (MH) and segments

of 25 to 200 sec containing the least amount of artifacts and

sleepiness were selected. Data of 214 electrodes (excluding cheek

and neck electrodes) were filtered (0.5–70 Hz; high order least-

squares filter) and automatic detection of bad channels using

Faster- and Fieldtrip-algorithms [19,20] was applied (median

number of interpolated channels per subject: 1, range: 0–3).

Thereafter, the EEG was decomposed by independent component

analysis (EEGLAB; [21]) and reconstructed after excluding

components loading on the electro-cardiogramm, line noise in

single electrodes or single gross artifacts; at maximum 5% of

components were excluded. For epoch selection, the EEG was re-

referenced to average reference, bad channels were interpolated

using spherical splines [22] and a combined segment of at least

120 sec length was created; at intersections an inverse hanning

window was applied. By a second visual inspection, remaining

periods of drowsiness and artifacts as well as intersections were

labeled as ‘‘bad’’. Finally, an automatic epoch selection was

performed in which one second periods labeled as ‘‘bad’’

(manually or by algorithm) had a very low probability to be

included into a final epoch. Based on previous results, twelve 4-

sec-epochs were used for further analysis, as they have been shown

to be more reliable than four 12-second-epochs of identical total

length in the same dataset [23].

Measures of functional connectivity
The phase-lag-index (PLI; [8]) and the weighted PLI (wPLI;

[12]) were used as measures of functional connectivity and were

calculated using TAPEEG [18]. Shortly, the PLI is an index of the

asymmetry in the distribution of phase differences calculated from

the instantaneous phases of two time-series, here the signal of a

pair of electrodes:

PLI~DSsign sin DQ tkð Þð Þ½ �TD ð1Þ

DW is the phase difference at time-point k between two time

series and is determined for all time-points (k = 1 … N) per epoch

(N = 4096), sign stands for signum function, ,. denotes the mean

value and || indicates the absolute value. Instantaneous phases

were determined by the Hilbert transformation, applying a

Hanning window on the concurrent fast Fourier transform. PLI

ranges between 0 and 1. Common sources as volume conduction

and the reference electrode do not generate a phase-lag between

the time-series of two electrodes, thus phase differences center

around 0 or +/2 p, resulting in a PLI near or equaling 0; time-

series without coupling (‘‘noise’’) generate a symmetric uniform

phase distribution also resulting in a PLI near or equaling 0. In

contrast, a consistent phase-lag between two time-series generates

an asymmetric distribution of phase differences reflecting true

interactions, and a completely asymmetric distribution results in a

PLI of 1.

The wPLI is an extension of the PLI [12]. By weighing each

phase difference according to the magnitude of the lag, phase

differences around zero only marginally contribute to the

calculation of the wPLI. This procedure reduces the probability

of detecting ‘‘false positive’’ connectivity in the case of volume

conducted noise sources with near zero phase lag and increases the

sensitivity in detecting phase synchronization [12].Weighing is

achieved by using the imaginary component of the cross-spectra as

a factor. We employ here the debiased wPLI estimator according

to formulas 26 and 32 in Vinck et al. [12].

PLI/wPLI-Networks Long-Term Reliability
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For further analysis, PLI/wPLI was first calculated for each pair

of electrodes per epoch based on N = 4096 phase difference

vectors, thereafter twelve replicates were averaged to generate the

average PLI/wPLI weight matrix per subject.

Analysis was done on a global and on a regional level of spatial

resolution. Global PLI/wPLI equals the average of all PLI/wPLI

values of the average weight matrix per subject. Regional PLI/

wPLI is based on 22 anatomically defined regions comprising 7 or

8 electrodes (n = 170, excluding electrodes in the midline and at

the outer border, see Figure S1). For each region, the average

connectivity of all its electrodes to all other regional groups of

electrodes was determined, i.e. the regional degree (row average of

respective electrodes of the weight matrix). In addition, the

connectivity between each two regions was calculated (average

over cells of the weight matrix belonging to respective electrodes of

two regions) resulting in n = 231 links. For correlation to distance,

PLI/wPLI values of pairs of electrodes and their respective inter-

electrode distances were used. To display the connectomes, the

grand means over all average PLI/wPLI weight matrices at

baseline were plotted. PLI/wPLI was calculated for the theta-(4–

8 Hz), alpha1-(8–10 Hz), alpha2-(10–13 Hz) and beta-(13–30 Hz)

band using a butterworth bandpass-filter.

Graph measures
Graph measures were calculated based on the average PLI/

wPLI weight matrix of the twelve epochs per subject in each

frequency band (n = 214 nodes). Regional weight matrices (n = 22

nodes) were not used, as it is disputable whether graph measures in

small networks are meaningful [24]. Calculation of graph

measures on each single epoch weight matrix and subsequent

averaging had resulted in lower test-retest reliability (see Table S1).

This is probably due to the fact that averaging the single epoch

weight matrices diminishes momentary connectivity patterns and

spurious connectivity due to noise resulting in the individual

‘‘core’’ connectivity. However, momentary connectivity patterns

and subsequent network characterization by graph measures may

show different aspects than the network characterization based on

the average connectivity matrix. In order to avoid arbitrary

thresholds and unconnected nodes, weighted network analysis was

employed in which each edge is equivalent to the measured PLI/

wPLI of two interconnected nodes. Undirected measures of

functional segregation and integration were calculated according

to the definitions given in Stam et al. [25]; respective formulas

were implemented in TAPEEG [18].

The weighted clustering coefficient C quantifies the intensities of

the subgraphs of a node and is equivalent to the unweighted

clustering coefficient normalized by the average intensities of

triangles at the node, if the weight matrix is symmetric and weights

ranging between 0 and 1 [25,26]. The weighted clustering

coefficient at node i is defined as:

Ci~

P
k=i

P
l=i

l=k

WikWilWkl

P
k=i

P
l=i

l=k

WikWil

ð2Þ

in which w is defined as the weight between two nodes. The

average over all Ci is the mean clustering coefficient (Cw), a global

measure of functional segregation of the network [14,27].

The weighted shortest path length Lij gives the average of the

shortest distances of one node to each other node in the network,

where shortest distance in the weighted case is defined as the

smallest inverse of the sum of PLI values of connecting edges

between i and j if wij unequals zero, and Lij is infinity if wij equals

zero. The average over all Lij is the weighted average path length

(Lw), a global measure of functional integration of the network

[14,28] and is defined as:

Lw~
1

1

N N{1ð Þ �
XN

i~1

XN

j=i
1=Lij

� � ð3Þ

in which N is defined as the number of nodes in the network.

Using the harmonic mean instead of the arithmetic mean handles

infinitive path lengths from unconnected nodes [25].

In order to make graph measures independent of network size

and better comparable between subjects, they were normalized

[25]. Edge weights of an original network were randomly

reshuffled preserving network size but destroying network

structure, and Cw and Lw were calculated for this random

network. Using the average Cw and Lw of 50 surrogate random

networks iterated five times in the denominator and Cw and Lw in

the nominator, the normalized Cw or gamma and the normalized

Lw or lambda were calculated.

To determine whether networks show a small-world-configura-

tion, the small-world-index (SWI; [29]) was calculated as the ratio

between gamma and lambda for each subject. An index .1

signifies efficient small-world topology, i.e. the combination of high

local clustering, as typical for regular networks and short path

length, as typical for random networks; small-world topology has

been shown to be a salient feature of many real-world networks

[15] including the human brain [30].

Statistical analysis
Cross-sectional inter-subject variability was expressed as the

coefficient of variation (CoV) calculated as the ratio between the

standard deviation and the mean of global PLI/wPLI, gamma,

lambda and SWI at baseline. TRT over three time points was

estimated for the same measures as well as for regional degree and

regional links using the intra-class-correlation coefficient (ICC

[3,1]; [31]). A bootstrapping procedure with replacements and

10000 permutations was performed to estimate the 95%

confidence interval (95% CI) for both indices. In accordance with

previous studies, TRT was categorized as ‘‘excellent’’ if ICC.

0.75, as ‘‘good’’ if ICC: 0.60–0.75, as ‘‘fair’’ if ICC: 0.40–0.60 and

as ‘‘poor’’ if ICC,0.40 [16,17,32].

Spearman’s rank correlation coefficient was used to measure

associations between inter-electrode distance and PLI/wPLI

within subjects. ANOVAs were used to compare global PLI/

wPLI values between frequency bands at baseline and within

frequency bands between time points. The topographies of the

mean connectivity distribution (connectome) were compared

between frequency bands by using the average nodal degree over

all subjects at baseline in permutation tests on ANOVA with

frequency band as factor. Permutation statistics were used to

control for multiple comparisons and non-Gaussian distributions

[33].

Results

Inter-subject variability of global PLI was low to moderate over

frequency bands (0.12,CoV,0.28; Table 1) and very low for PLI

based gamma, lambda and SWI (CoV,0.022, CI 95%: 0.01–

0.027). Global wPLI showed higher inter-subject variability

(0.25,CoV,0.55, Table 1) but comparable values for wPLI

based graph measures (CoV,0.048, CI 95%: 0.012–0.059).

TRT was good to excellent for global PLI over frequency bands

(0.68,ICC,0.79), and moderate to good for PLI-based graph

PLI/wPLI-Networks Long-Term Reliability
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measures (gamma: 0.48,ICC,0.65; lambda: 0.51,ICC,0.73;

SWI: 0.33,ICC,0.63; see Table 2). Global wPLI had compa-

rable TRT (0.70,ICC,0.80) but lower values for wPLI-based

graph measures (gamma: 0.43,ICC,0.57; lambda: 0.12,ICC,

0.47; SWI: 0.32,ICC,0.51; Table 3).

On the regional level, ICC values are given as medians of the 22

ICC values per regional degrees and 231 ICC-values per inter-

regional links over frequency bands. PLI had good TRT for

regional degree (0.58,ICC,0.75) and fair to good TRT for inter-

regional links (0.42,ICC,0.61; Table 4). TRT of wPLI were

comparable for regional degree (0.59,ICC 0.77) and inter-

regional links (0.41,ICC,0.64; Table 5). Figure S2 and Figure

S3 show the topographic distribution of ICC values per frequency

band and electrode for PLI/wPLI, respectively.

The correlation of inter-electrode distance with inter-electrode

PLI was very weak in all subjects at all frequency bands (median

rho over frequency bands: 20.06,rho,0) with no clear direction,

albeit highly significant in single subjects (maximal positive

correlation: rho = 0.15, maximal negative correlation: rho = 2

0.19; p,0.0001) due to the high number of values (214*213/2

data points per subject). For inter-electrode wPLI, a weak negative

correlation to inter-electrode distance was found (median rho over

frequency bands: 20.22,rho,20.18) and in single subjects

maximal negative correlation was rho = 20.4, maximal positive

correlation was rho = 0.03, p,0.0001).

Global PLI and wPLI were significantly different between

frequency bands at baseline (PLI: F = 127, p,0.0001; wPLI:

F = 75, p,0.0001; Figure 1a and 1b); in post-hoc t-tests, all bands

were significantly different to each other (p,0.05 for alpha1 vs.

alpha2, p,0.0001 for all other comparisons). Within frequency

bands global PLI/wPLI showed no significant differences over

time (PLI: F,0.45, p.0.5; wPLI: F,0.33, p.0.5). Topographic

connectivity patterns differed significantly between frequency

bands at the single electrode level, i.e. in nodal degree (PLI: F.

73, pcorrected,0.001; wPLI: F.45, pcorrected,0.001; respective

connectomes are displayed in Figure 2 and Figure 3 and in Figure

S4 and Figure S5 for regional connectomes).

All individual networks showed a small-world-configuration

(medians over frequency bands; PLI-based SWI: 1.024,SWI,

1.029, range: 1.016–1.078; wPLI-based SWI: 1.053,rho,1.069,

range: 1.017–1.200).

Discussion

Characterization of functional connectivity by PLI shows good

to excellent long-term test-retest-reliability over two years, and

mainly good long-term test-retest-reliability of PLI-based graph

measures; inter-subject variability is acceptably low. Functional

connectivity determined by the wPLI shows comparable TRT as

the PLI, wPLI-based graph measures are slightly less reliable and

inter-subject variability is higher. High-resolution EEG is a

suitable recording modality when care is taken that the measure

of functional connectivity is not relevantly influenced by common

sources as volume conduction and the reference electrode. The

weak negative correlation between inter-electrode distance and

inter-electrode wPLI is presumably due to the weighing factor, as

short range connections are more likely to have large consistent

phase difference than long range connections; volume conduction

defined as zero-lag phase difference is neither detected by PLI nor

by wPLI.

Only a few studies report so far on test-retest-reliability of

functional connectivity and network measures, mainly at short-

term test-retest intervals of several weeks. In fMRI-studies using

correlations between BOLD-signal time series to estimate func-

tional connectivity, test-retest-reliability was only moderate in one

study [34], and even low to poor in another [32]. Using MEG and

Table 1. Inter-subject variability of global PLI and wPLI at baseline by frequency band expressed by the coefficient of variation
(CoV; CI: confidence interval estimated from bootstrapping).

theta alpha1 alpha2 beta

PLI 0.12 0.23 0.28 0.15

95% CI 0.08–0.20 0.17–0.31 0.21–0.38 0.12–0.17

wPLI 0.25 0.44 0.55 0.29

95% CI 0.14–0.41 0.33–0.56 0.39–0.76 0.25–0.33

doi:10.1371/journal.pone.0108648.t001

Table 2. Test-retest-reliability of global PLI and PLI-based graph measures over time by frequency band expressed by the
intraclass-correlation coefficient (ICC; CI: confidence interval estimated from bootstrapping; SWI: small-world-index).

theta alpha1 alpha2 beta

PLI 0.72 0.79 0.74 0.68

95% CI 0.49–0.92 0.69–0.90 0.63–0.87 0.46–0.81

gamma 0.65 0.64 0.48 0.58

95% CI 0.43–0.85 0.39–0.88 0.24–0.67 0.36–0.76

lambda 0.73 0.57 0.56 0.51

95% CI 0.52–0.90 0.23–0.87 0.32–0.73 0.18–0.80

SWI 0.56 0.63 0.33 0.56

95% CI 0.34–0.79 0.40–0.86 0.16–0.60 0.40–0.69

doi:10.1371/journal.pone.0108648.t002

PLI/wPLI-Networks Long-Term Reliability
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mutual information as the measure of functional connectivity,

Deuker et al. [16] found good test-retest-reliability for FC as well

as several global graph measures during an eyes-open n-back task

at a test-retest interval of 6–8 weeks. In higher frequency bands

(beta- and gamma-band), during eyes-open resting state and in

second-order graph measures as for example the small-world-

index, the TRT was comparably lower. Using as well MEG and

mutual information, Jin et al. [17] reported fair to moderate TRT

for different nodal centrality measures at a test-retest-interval of

two weeks, which was partly higher in the eyes-open as compared

to the eyes-closed resting state, and much lower in the gamma-

band.

In the current study, beta-band TRT as well as small-world-

index TRT also tends to be lower compared to lower frequency

bands and first-order graph-measures, respectively. As pointed out

previously this is probably due to the different physiological

function as higher frequencies may serve to establish cognitive

representation, whereas lower frequency bands are more anatom-

ically constrained [35,36]. The gamma-band has not been studied

here due to its sensitivity to muscle artifacts, which partly also

applies for the beta-band [37]. The level of spatial resolution on

which connectivity is determined influences the TRT with highest

TRT on the global level and slightly lower TRT for regional

degree. On the level of inter-regional links TRT is highly variable

ranging from poor for some links to good and excellent in others.

Regional connectivity analysis may, on the one hand, better catch

more localized group differences in for example parietal hub

regions than global measures, and, on the other hand, is more

robust to slight variations of local maxima and outliers in

connectivity compared to analyses on the single electrode level.

Several methodological differences may explain the higher TRT

of eyes-closed resting state reported in the current study as

compared to previous studies. First, MEG mainly picks up signals

from sources within sulci, whereas the EEG-signal is mostly driven

by sources on the gyri [38,39]; second, mutual information depicts

a different aspect of connectivity than measures based on phase

synchronization as the PLI and wPLI [7], and third, the way of

band-pass-filtering, bandwidth and the choice of unweighted [16]

or weighted networks ([17], current study) may play a critical role.

For chronic brain diseases evolving over years, long-term TRT

as shown in the current study for the PLI/wPLI is paramount

since ageing may influence networks as well [40,41]. Whether

networks constitute a stable trait over many years up to a certain

age in analogy to the spectral ‘‘fingerprint’’ of the EEG [42,43]

and as suggested by a stable association of genetic features and

functional connectivity [44,45] remains to be elucidated. Howev-

er, in a small group of elderly healthy controls around 60 years, the

PLI-based normalized clustering coefficient decreased in the

alpha-bands over a four year period, whereas path length and

other frequency bands did not change significantly [46].

The current study does not allow conclusions on the validity of

the PLI/wPLI and PLI/wPLI-based graph measures derived from

EEG with respect to characterization and monitoring of diseases of

the central nervous system. Currently it is far from clear how tight

measures of functional connectivity, which express a mere

statistical interdependency [47], are associated with the known

thalamo-cortical and other networks involved in the generation of

oscillatory brain activity [36]. In particular the resting state scalp

signal is difficult to interpret, albeit several studies have shown a

complex relationship between resting state brain oscillations and

resting state networks derived from functional MRI [48,49].

However, PLI/wPLI networks show a clear dominance in

connectivity in parieto-occipital regions, corresponding to the

topography of structural and functional connectomes derived from

MRI studies [30,50]. Additionally, they show clear differences

between frequency bands as would be expected by the known

Table 3. Test-retest-reliability of global wPLI and wPLI-based graph measures over time by frequency band expressed by the
intraclass-correlation coefficient (ICC; CI: confidence interval estimated from bootstrapping; SWI: small-world-index).

theta alpha1 alpha2 beta

wPLI 0.78 0.80 0.74 0.70

95% CI 0.56–0.94 0.69–0.90 0.63–0.88 0.50–0.83

gamma 0.57 0.43 0.49 0.53

95% CI 0.33–0.81 0.14–0.78 0.21–0.70 0.28–0.75

lambda 0.47 0.12 0.41 0.38

95% CI 0.27–0.66 20.02–0.30 0.14–0.62 0.11–0.64

SWI 0.49 0.50 0.32 0.51

95% CI 0.21–0.75 0.24–0.81 0.11–0.55 0.38–0.65

doi:10.1371/journal.pone.0108648.t003

Table 4. Test-retest-reliability of regional PLI over time by frequency band.

theta alpha1 alpha2 beta

regional degree median 0.66 0.75 0.71 0.58

range 0.51–0.78 0.57–0.83 0.63–0.76 0.42–0.64

inter-regional links median 0.47 0.61 0.60 0.42

range 0.08–0.83 0.24–0.85 0.41–0.79 0.01–0.82

The median (range) intraclass-correlation coefficients over 22 regional degrees and 231 inter-regional links are given.
doi:10.1371/journal.pone.0108648.t004
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Table 5. Test-retest-reliability of regional wPLI over time by frequency band.

theta alpha1 alpha2 beta

regional degree median 0.71 0.77 0.72 0.59

range 0.57–0.84 0.60–0.85 0.62–0.78 0.49–0.67

inter-regional links median 0.53 0.64 0.61 0.41

range 0.14–0.84 0.23–0.87 0.34–82 0.05–0.79

The median (range) intraclass-correlation coefficients over 22 regional degrees and 231 inter-regional links are given.
doi:10.1371/journal.pone.0108648.t005

Figure 1. Distribution of a) global PLI values and b) global wPLI values between subjects at baseline in different frequency bands;
all bands are significantly different (see text).
doi:10.1371/journal.pone.0108648.g001
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physiological differences between frequency bands in spectral

analysis [51,52,53,54,55] and as noted in previous MEG studies

[17,56]. Smallworldness, a feature apparent in PLI/wPLI-based

networks in the current study is more difficult to interpret; in

particular as weighted network analysis was used [24]. Further-

more, the concept of smallworldness is challenged by a recent

anatomical study [57] and has even been reported to be artificially

induced in EEG-model data [58] (see below). However, PLI and

PLI-based graph measures have been shown to differentiate

between healthy controls and patients with Alzheimer’s diseases

(AD) [25], Parkinson’s disease [46], Multiple Sclerosis [59], and

even demonstrated group differences in a clinical trial on a

medical food in AD [60]. The wPLI has only been applied in

rodent local field potentials showing clear differences in a task

related paradigm [12].

Volume conduction is one of the main methodological problems

in functional connectivity studies using EEG or MEG [9,11]. The

PLI has explicitly been developed to be insensitive to zero-lag

phase differences [8], which are a hallmark of volume conduction.

In the current study, there was no consistent relation between PLI

and inter-electrode distance, confirming robustness against volume

conduction. However, using signal modeling Peraza et al. [58]

report that volume conduction may influence the PLI when

multiple independent sources are present and in turn biases graph

measures. The study compared unweighted networks based on 64

uncorrelated sources to networks based on the same sources

multiplied by a forward solution to simulate volume conducted

scalp signal. Both models were expected to generate random

networks but this was not true for the simulated scalp signal and

even small-worldness was found [58]. To reduce such spurious

connectivity due to uncorrelated noise, Vinck et al [12] proposed

the wPLI. Still, in real data, PLI/wPLI may detect both,

physiological and spurious connectivity, in particular on the single

subject level. Averaging over epochs reduces noise but is

constrained by the availability of a sufficient number of good

quality epochs. Applying rigorous ICA filtering by selecting only

components of interest harbours the risk to exclude important

information systematically. However, given all these caveats,

several studies have shown that resting state connectivity and

graph measures differ between healthy controls and patients with

brain disease [25,46,59,60]. Another relevant limitation of the

PLI/wPLI is the downside of its insensitivity to volume conduc-

tion: physiological connectivity with zero phase-lag may remain

undetected, and thus, PLI/wPLI may underestimate short-range

connections and, in terms of networks, local segregation or

clustering [56].

The influence of the recording electrode can be greatly

diminished by re-referencing to the average of all electrodes when

using high-resolution EEG with 128 or more electrodes, as in a

closed system the average signal sums up to zero [9]. Another way

to deal with common sources would be the reconstruction of the

signal in the source space; however, the translation matrix may

itself induce artificial functional connectivity [61] and methodol-

ogy is only going to be developed [56].

Regarding quantification of TRT, the intra-class correlation

coefficient is widely used but has been criticized as being

susceptible to bias [62,63], as it is only a relative index of

reliability and can be inflated by few subjects with high within-

Figure 2. Topographic plots of the grand mean PLI connectomes (green: 3% strongest links are plotted) and grand mean PLI value
per electrode (nodal degree, values are color-coded) over all subjects at baseline by frequency band: a) theta, b) alpha1, c) alpha2,
d) beta.
doi:10.1371/journal.pone.0108648.g002
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subjects variability. Using the bootstrapping technique to estimate

95% confidence intervals, we partly diminished this bias. Still,

comparisons to studies not indicating confidence intervals remain

difficult, as the ICC-value alone may only be a rough estimate of

TRT.

Conclusions

PLI/wPLI based network characterization derived from high-

resolution EEG-recordings is apparently reliable over two years on

a global and regional level of spatial resolution. Which physiolog-

ical mechanisms are exactly reflected by these measures in the

resting state is currently far from clear, but beyond the scope of the

current study. However, good long-term test-retest-reliability is

one important requirement for a biomarker. Network character-

ization may help to explore the effects of chronic disorders on the

functional organization of the brain. Long-term TRT in older

subjects in whom effects of ageing may have more impact remains

to be studied. As high-resolution EEG is widely available and easy

to administer data may even be gathered in a multicenter setting,

allowing to reach appropriate sample sizes for testing hypotheses

on functional reorganization in brain diseases in due time.
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