130 research outputs found

    Multi-strand coronal loop model and filter-ratio analysis

    Get PDF
    We model a coronal loop as a bundle of seven separate strands or filaments. Each of the loop strands used in this model can independently be heated (near their left footpoints) by Alfv\'en/ion-cyclotron waves via wave-particle interactions. The Alfv\'en waves are assumed to penetrate the strands from their footpoints, at which we consider different wave energy inputs. As a result, the loop strands can have different heating profiles, and the differential heating can lead to a varying cross-field temperature in the total coronal loop. The simulation of TRACE observations by means of this loop model implies two uniform temperatures along the loop length, one inferred from the 171:195 filter ratio and the other from the 171:284 ratio. The reproduced flat temperature profiles are consistent with those inferred from the observed EUV coronal loops. According to our model, the flat temperature profile is a consequence of the coronal loop consisting of filaments, which have different temperatures but almost similar emission measures in the cross-field direction. Furthermore, when we assume certain errors in the simulated loop emissions (e.g., due to photometric uncertainties in the TRACE filters) and use the triple-filter analysis, our simulated loop conditions become consistent with those of an isothermal plasma. This implies that the use of TRACE/EIT triple filters for observation of a warm coronal loop may not help in determining whether the cross-field isothermal assumption is satisfied or not

    Multi-strand coronal loop model and filter-ratio analysis

    Full text link
    We model a coronal loop as a bundle of seven separate strands or filaments. Each of the loop strands used in this model can independently be heated (near their left footpoints) by Alfv\'en/ion-cyclotron waves via wave-particle interactions. The Alfv\'en waves are assumed to penetrate the strands from their footpoints, at which we consider different wave energy inputs. As a result, the loop strands can have different heating profiles, and the differential heating can lead to a varying cross-field temperature in the total coronal loop. The simulation of TRACE observations by means of this loop model implies two uniform temperatures along the loop length, one inferred from the 171:195 filter ratio and the other from the 171:284 ratio. The reproduced flat temperature profiles are consistent with those inferred from the observed EUV coronal loops. According to our model, the flat temperature profile is a consequence of the coronal loop consisting of filaments, which have different temperatures but almost similar emission measures in the cross-field direction. Furthermore, when we assume certain errors in the simulated loop emissions (e.g., due to photometric uncertainties in the TRACE filters) and use the triple-filter analysis, our simulated loop conditions become consistent with those of an isothermal plasma. This implies that the use of TRACE/EIT triple filters for observation of a warm coronal loop may not help in determining whether the cross-field isothermal assumption is satisfied or not

    Instabilities Driven by the Drift and Temperature Anisotropy of Alpha Particles in the Solar Wind

    Full text link
    We investigate the conditions under which parallel-propagating Alfv\'en/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which wα0.25vAw_{\parallel \alpha} \gtrsim 0.25 v_{\mathrm A}, where wαw_{\parallel \alpha} is the parallel alpha-particle thermal speed and vAv_{\mathrm A} is the Alfv\'en speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon wα/vAw_{\parallel \alpha}/v_{\mathrm A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed UαU_\alpha than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which Uα=0U_\alpha =0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.Comment: 13 pages, 13 figure

    Dirac particle in the presence of plane wave and constant magnetic fields: Path integral approach

    Full text link
    The Green function (GF) related to the problem of a Dirac particle interacting with a plane wave and constant magnetic fields is calculated in the framework of path integral via Alexandrou et al. formalism according to the so-called global projection. As a tool of calculation, we introduce two identities (constraints) into this formalism, their main role is the reduction of integrals dimension and the emergence in a natural way of some classical paths, and due to the existence of constant electromagnetic field, we have used the technique of fluctuations. Hence the calculation of the (GF) is reduced to a known gaussian integral plus a contribution of the effective classical action.Comment: 12 pages, no figure

    Radial evolution of the wave-vector anisotropy of solar wind turbulence between 0.3 and 1 AU

    Full text link
    We present observations of the power spectral anisotropy in wave-vector space of solar wind turbulence, and study how it evolves in interplanetary space with increasing heliocentric distance. For this purpose we use magnetic field measurements made by the Helios-2 spacecraft at three positions between 0.29 and 0.9 AU. To derive the power spectral density (PSD) in (k,k)(k_\parallel, k_\bot)-space based on single-satellite measurements is a challenging task not yet accomplished previously. Here we derive the spectrum PSD2D\rm{PSD}_{\rm{2D}}(k\rm{k}_\parallel, k\rm{k}_\bot) from the spatial correlation function CF2D(r,r)\rm{CF}_{\rm{2D}}(r_\parallel, r_\bot) by a transformation according to the projection-slice theorem. We find the so constructed PSDs to be distributed in k-space mainly along a ridge that is more inclined toward the k\rm{k}_\bot than k\rm{k}_\parallel axis, a new result which probably indicates preferential cascading of turbulent energy along the k\rm{k}_\bot direction. Furthermore, this ridge of the distribution is found to gradually get closer to the k\rm{k}_\bot axis, as the outer scale length of the turbulence becomes larger while the solar wind flows further away from the Sun. In the vicinity of the k\rm{k}_\parallel axis, there appears a minor spectral component that probably corresponds to quasi-parallel Alfv\'enic fluctuations. Their relative contribution to the total spectral density tends to decrease with radial distance. These findings suggest that solar wind turbulence undergoes an anisotropic cascade transporting most of its magnetic energy towards larger k\rm{k}_\bot, and that the anisotropy in the inertial range is radially developing further at scales that are relatively far from the ever increasing outer scale

    Non-Commutativity, Teleology and GRB Time Delay

    Full text link
    We propose a model in which an energy-dependent time delay of a photon originates from space-time non-commutativity, the time delay is due to a noncommutative coupling between dilaton and photon. We predict that in our model, high energy photons with different momenta can either be delayed or superluminal, this may be related to a possible time delay reported by the Fermi LAT and Fermi GBM Collaborations.Comment: 8 pages, 1 figure, typo revised, contents and reference adde
    corecore