261 research outputs found

    A low power, large dynamic range, CMOS amplifier and analog memory for capacitive sensors

    Get PDF
    This paper has been written to announce the design of a CMOS charge to voltage amplifier and it¹s integration within an analog memory. Together they provide the necessary front end electronics for the CMS electromagnetic calorimeter (ECAL) preshower detector systeAspell,Pm in the LHC experiment foreseen at the CERN particle physics laboratory. The design and measurements of the amplifier realised in a 1.5mm bulk CMOS process as a 16 channel prototype chip are presented. Results show the mean gain and peaking time of = 1.74mV/mip, = 18ns with channel to channel variations; s(peak_voltage) = 8% and s(peak_time) = 6.5%. The dynamic range is shown to be linear over 400mips with an integral non linearity (INL)=0.05mV as expressed in terms of sigma from the mean gain over the 400mip range. The measured noise of the amplifier was ENC=1800+41e/pF with a power consumption of 2.4mW/channel. The amplifier can support extreme levels of leakage current. The gain remains constant for up to 200mA of leakage current. The integration of this amplifier within a 32 channel, 128 cell analog memory chip ³DYNLDR² is then demonstrated. The DYNLDR offers sampling at 40MHz with a storage time of up to 3.2ms. It provides continuous Write/Read access with no dead time. Triggered data is protected within the memory until requested for readout which is performed at 2.5MHz. The memory is designed to have a steerable dc level enabling maximum dynamic range performance. Measurements of the DYNLDR are presented confirming the original amplifier performance. The memory itself has a very low pedestal non uniformity (s(ped)) of 0.9mV and a gain of 10mV/mip

    Beam tests of the trigger and digital processing electronics for the electromagnetic calorimeter of the CMS experiment

    Get PDF
    A prototype of the trigger and digital processing electronics for the electromagnetic calorimeter of the CMS experiment, coupled to a prototype of the PbWO4 crystal calorimeter, was tested during summer 96 in the H4 beamline at the CERN SPS. A very successful operation was achieved for this system, which runs in synchronous and pipelined mode at the LHC clock frequency, and performs the basic trigger and data acquisition functions needed in the CMS electromagnetic calorimeter. The performance of the trigger front-end electronics is well within the established requirements: a highly efficient bunch crossing identification ( > 99.9%), a good trigger energy resolution ( s/E ~9%/sq( E)+2%) and a highly efficient electron cluster shape identification ( ~99%) have been achieved. The FERMI digitizing system based on a dynamic analog compressor and a sampling ADC showed a very good perform ance, in particular the energy resolution for 150 GeV electrons was 0.54%, equal to the resolution obtained with a conventional charge integration ADC system

    The CMS Electromagnetic Calorimeter Data Acquisition System at the 2006 Test Beam

    Get PDF
    The Electromagnetic Calorimeter of the CMS experiment at the CERN LHC is an homogeneous calorimeter made of about 80000 Lead Tungstate crystals. From June to November 2006, eleven barrel Supermodules (1700 crystals each) were exposed to beam at CERN SPS, both in stand-alone and in association with portions of the Hadron Calorimeter. We present the description of the system used to configure and readout the calorimeter during this period. The full set of final readout electronics boards was employed, together with the pre-series version of the data acquisition software. During this testbeam, the hardware and software concepts for the final system were validated and the successfull operation of all the ten supermodules was ensured

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated
    • …
    corecore