535 research outputs found
First-principles calculation of intrinsic defect formation volumes in silicon
We present an extensive first-principles study of the pressure dependence of
the formation enthalpies of all the know vacancy and self-interstitial
configurations in silicon, in each charge state from -2 through +2. The neutral
vacancy is found to have a formation volume that varies markedly with pressure,
leading to a remarkably large negative value (-0.68 atomic volumes) for the
zero-pressure formation volume of a Frenkel pair (V + I). The interaction of
volume and charge was examined, leading to pressure--Fermi level stability
diagrams of the defects. Finally, we quantify the anisotropic nature of the
lattice relaxation around the neutral defects.Comment: 9 pages, 9 figure
3D Acoustic Lagrangian Velocimetry
International audienceWe report Lagrangian measurements obtained with an acoustic Doppler velocimetry technique. From the Doppler frequency shift of acoustic waves scattered by tracer particles in a turbulent flow, we are able to measure the full three-component velocity of the particles. As a first application, we have studied velocity statistics of Lagrangian tracers in a turbulent air jet at Rλ∼320 and at various distances from the nozzle. The choice of an air jet is motivated by the fact that jets produce a well characterized high level tubulence and open air flows are well suited to simultaneaously achieve classical hot wire Eulerian measurements. Therefore, we are also able to explicitly address the question of the differences between Eulerian and Lagrangian statistics. As Lagrangian tracers we use soap bubbles inflated with Helium which are neutrally buoyant in air and can be assimilated to fluid particles. Velocity statistics are analysed. We show that the Lagrangian autocorrelation decays faster in time than its Eulerian counterpart. Finally we present Lagrangian time velocity increments statistics which, as already reported by previous work, exhibits stronger intermittency than Eulerian velocity increments
Measurements of the magnetic field induced by a turbulent flow of liquid metal
Initial results from the Madison Dynamo Experiment provide details of the
inductive response of a turbulent flow of liquid sodium to an applied magnetic
field. The magnetic field structure is reconstructed from both internal and
external measurements. A mean toroidal magnetic field is induced by the flow
when an axial field is applied, thereby demonstrating the omega effect.
Poloidal magnetic flux is expelled from the fluid by the poloidal flow.
Small-scale magnetic field structures are generated by turbulence in the flow.
The resulting magnetic power spectrum exhibits a power-law scaling consistent
with the equipartition of the magnetic field with a turbulent velocity field.
The magnetic power spectrum has an apparent knee at the resistive dissipation
scale. Large-scale eddies in the flow cause significant changes to the
instantaneous flow profile resulting in intermittent bursts of non-axisymmetric
magnetic fields, demonstrating that the transition to a dynamo is not smooth
for a turbulent flow.Comment: 9 pages, 11 figures, invited talk by C. B. Forest at 2005 APS DPP
meeting, resubmitted to Physics of Plasma
Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance
Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect
transistors (FET) to the nanometer scale. Extensive experimental works have
been performed recently to develop the appropriate technology and to explore DC
characteristics of carbon nanotube field effect transistor (CNTFET). In this
work, we present results of Monte Carlo simulation of a coaxially gated CNTFET
including electron-phonon scattering. Our purpose is to present the intrinsic
transport properties of such material through the evaluation of electron
mean-free-path. To highlight the potential of high performance level of CNTFET,
we then perform a study of DC characteristics and of the impact of capacitive
effects. Finally, we compare the performance of CNTFET with that of Si nanowire
MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad.
Sci. Pari
Generation of magnetic field by dynamo action in a turbulent flow of liquid sodium
We report the observation of dynamo action in the VKS experiment, i.e., the
generation of magnetic field by a strongly turbulent swirling flow of liquid
sodium. Both mean and fluctuating parts of the field are studied. The dynamo
threshold corresponds to a magnetic Reynolds number Rm \sim 30. A mean magnetic
field of order 40 G is observed 30% above threshold at the flow lateral
boundary. The rms fluctuations are larger than the corresponding mean value for
two of the components. The scaling of the mean square magnetic field is
compared to a prediction previously made for high Reynolds number flows.Comment: 4 pages, 5 figure
Interfacial charge transfer in nanoscale polymer transistors
Interfacial charge transfer plays an essential role in establishing the
relative alignment of the metal Fermi level and the energy bands of organic
semiconductors. While the details remain elusive in many systems, this charge
transfer has been inferred in a number of photoemission experiments. We present
electronic transport measurements in very short channel ( nm)
transistors made from poly(3-hexylthiophene) (P3HT). As channel length is
reduced, the evolution of the contact resistance and the zero-gate-voltage
conductance are consistent with such charge transfer. Short channel conduction
in devices with Pt contacts is greatly enhanced compared to analogous devices
with Au contacts, consistent with charge transfer expectations. Alternating
current scanning tunneling microscopy (ACSTM) provides further evidence that
holes are transferred from Pt into P3HT, while much less charge transfer takes
place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure
Path lengths in turbulence
By tracking tracer particles at high speeds and for long times, we study the
geometric statistics of Lagrangian trajectories in an intensely turbulent
laboratory flow. In particular, we consider the distinction between the
displacement of particles from their initial positions and the total distance
they travel. The difference of these two quantities shows power-law scaling in
the inertial range. By comparing them with simulations of a chaotic but
non-turbulent flow and a Lagrangian Stochastic model, we suggest that our
results are a signature of turbulence.Comment: accepted for publication in Journal of Statistical Physic
First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy
Convergence of density-functional supercell calculations for defect formation
energies, charge transition levels, localized defect state properties, and
defect atomic structure and relaxation is investigated using the arsenic split
interstitial in GaAs as an example. Supercells containing up to 217 atoms and a
variety of {\bf k}-space sampling schemes are considered. It is shown that a
good description of the localized defect state dispersion and charge state
transition levels requires at least a 217-atom supercell, although the defect
structure and atomic relaxations can be well converged in a 65-atom cell.
Formation energies are calculated for the As split interstitial, Ga vacancy,
and As antisite defects in GaAs, taking into account the dependence upon
chemical potential and Fermi energy. It is found that equilibrium
concentrations of As interstitials will be much lower than equilibrium
concentrations of As antisites in As-rich, -type or semi-insulating GaAs.Comment: 10 pages, 5 figure
- …