Interfacial charge transfer plays an essential role in establishing the
relative alignment of the metal Fermi level and the energy bands of organic
semiconductors. While the details remain elusive in many systems, this charge
transfer has been inferred in a number of photoemission experiments. We present
electronic transport measurements in very short channel (L<100 nm)
transistors made from poly(3-hexylthiophene) (P3HT). As channel length is
reduced, the evolution of the contact resistance and the zero-gate-voltage
conductance are consistent with such charge transfer. Short channel conduction
in devices with Pt contacts is greatly enhanced compared to analogous devices
with Au contacts, consistent with charge transfer expectations. Alternating
current scanning tunneling microscopy (ACSTM) provides further evidence that
holes are transferred from Pt into P3HT, while much less charge transfer takes
place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure