98 research outputs found

    Coupling ocean currents and waves with wind stress over the Gulf Stream

    Get PDF
    This study provides the first detailed analysis of oceanic and atmospheric responses to the current-stress, wave-stress, and wave-current-stress interactions around the Gulf Stream using a high-resolution three-way coupled regional modeling system. In general, our results highlight the substantial impact of coupling currents and/or waves with wind stress on the air–sea fluxes over the Gulf Stream. The stress and the curl of the stress are crucial to mixed-layer energy budgets and sea surface temperature. In the wave-current-stress coupled experiment, wind stress increased by 15% over the Gulf Stream. Alternating positive and negative bands of changes of Ekman-related vertical velocity appeared in response to the changes of the wind stress curl along the Gulf Stream, with magnitudes exceeding 0.3 m/day (the 95th percentile). The response of wind stress and its curl to the wave-current-stress coupling was not a linear combination of responses to the wave-stress coupling and the current-stress coupling because the ocean and wave induced changes in the atmosphere showed substantial feedback on the ocean. Changes of a latent heat flux in excess of 20 W/m2 and a sensible heat flux in excess of 5 W/m2 were found over the Gulf Stream in all coupled experiments. Sensitivity tests show that sea surface temperature (SST) induced difference of air–sea humidity is a major contributor to latent heat flux (LHF) change. Validation is challenging because most satellite observations lack the spatial resolution to resolve the current-induced changes in wind stress curls and heat fluxes. Scatterometer observations can be used to examine the changes in wind stress across the Gulf Stream. The conversion of model data to equivalent neutral winds is highly dependent on the physics considered in the air–sea turbulent fluxes, as well as air–sea temperature differences. This sensitivity is shown to be large enough that satellite observations of winds can be used to test the flux parameterizations in coupled models

    Upper-ocean response to precipitation forcing in an ocean model hindcast of Hurricane Gonzalo

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11),(2020): 3219–3234, https://doi.org/10.1175/JPO-D-19-0277.1.Preexisting, oceanic barrier layers have been shown to limit turbulent mixing and suppress mixed layer cooling during the forced stage of a tropical cyclone (TC). Furthermore, an understanding of barrier layer evolution during TC passage is mostly unexplored. High precipitation rates within TCs provide a large freshwater flux to the surface that alters upper-ocean stratification and can act as a potential mechanism to strengthen the barrier layer. Ocean glider observations from the Bermuda Institute of Ocean Sciences (BIOS) indicate that a strong barrier layer developed during the approach and passage of Hurricane Gonzalo (2014), primarily as a result of freshening within the upper 30 m of the ocean. Therefore, an ocean model case study of Hurricane Gonzalo has been designed to investigate how precipitation affects upper-ocean stratification and sea surface temperature (SST) cooling during TC passage. Ocean model hindcasts of Hurricane Gonzalo characterize the upper-ocean response to TC precipitation forcing. Three different vertical mixing parameterizations are tested to determine their sensitivity to precipitation forcing. For all turbulent mixing schemes, TC precipitation produces near-surface freshening of about 0.3 psu, which is consistent with previous studies and in situ ocean observations. The influence of precipitation-induced changes to the SST response is more complicated, but generally modifies SSTs by ±0.3°C. Precipitation forcing creates a dynamical coupling between upper-ocean stratification and current shear that is largely responsible for the heterogeneous response in modeled SSTs.This work was supported by the National Aeronautics and Space Administration (NASA; Grant NNX15AD45G) and the National Oceanic and Atmospheric Administration (NOAA; Grant NA11OAR4320199)

    Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    Get PDF
    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes

    Estimating Wind Stress at the Ocean Surface From Scatterometer Observations

    Get PDF
    Abstract—Wind stress is the most important ocean forcing for driving tropical surface currents. Stress can be estimated from scatterometer-reported wind measurements at 10 m that have been extrapolated to the surface, assuming a neutrally stable atmosphere and no surface current. Scatterometer calibration is designed to account for the assumption of neutral stability; however, the assumption of a particular sea state and negligible current often introduces an error in wind stress estimations. Since the fundamental scatterometer measurement is of the surface radar backscatter (sigma-0) which is related to surface roughness and, thus, stress, we develop a method to estimate wind stress directly from the scatterometer measurements of sigma-0 and their associated azimuth angle and incidence angle using a neural network approach. We compare the results with in situ estimations and observe that the wind stress estimations from this approach are more accurate compared with those obtained from the conventional estimations using 10-m-height wind measurements. Index Terms—Atmospheric stability, neutral stability, scatterometer, wind stress. I

    The winds and currents mission concept

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rodriguez, E., Bourassa, M., Chelton, D., Farrar, J. T., Long, D., Perkovic-Martin, D., & Samelson, R. The winds and currents mission concept. Frontiers in Marine Science, 6, (2019): 438, doi:10.3389/fmars.2019.00438.The Winds and Currents Mission (WaCM) is a proposed approach to meet the need identified by the NRC Decadal Survey for the simultaneous measurements of ocean vector winds and currents. WaCM features a Ka-band pencil-beam Doppler scatterometer able to map ocean winds and currents globally. We review the principles behind the WaCM measurement and the requirements driving the mission. We then present an overview of the WaCM observatory and tie its capabilities to other OceanObs reviews and measurement approaches.ER was funded under NASA grant NNN13D462T. DC was funded under NASA grant NNX10AO98G. JF was funded under NASA grants NNX14AM71G and NNX16AH76G. DL was funded under NASA grant NNX14AM67G. DP-M was funded under NASA grant NNH13ZDA001N. RS was funded under NASA grant NNX14AM66G

    FluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gentemann, C. L., Clayson, C. A., Brown, S., Lee, T., Parfitt, R., Farrar, J. T., Bourassa, M., Minnett, P. J., Seo, H., Gille, S. T., & Zlotnicki, V. FluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sensing, 12(11), (2020): 1796, doi:10.3390/rs12111796.Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean–atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air–sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean–atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean–atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.C.L.G. was funded by NASA grant 80NSSC18K0837. C.A.C. was funded by NASA grants 80NSSC18K0778 and 80NSSC20K0662. J.T.F. was funded by NASA grants NNX17AH54G, NNX16AH76G, and 80NSSC19K1256. S.T.G. was funded by the National Science Foundation grant PLR-1425989 and by the NASA Ocean Vector Winds Science Team grant 80NSSC19K0059. M.B. was funded in part by the Ocean Observing and Monitoring Division, Climate Program Office (FundRef number 100007298), National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and by the NASA Ocean Vector Winds Science Team grant through NASA/JPL. H.S. was funded by National Oceanic and Atmospheric Administration (NOAA) grant NA19OAR4310376 and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at Woods Hole Oceanographic Institution

    Globally Gridded Satellite (GridSat) Observations for Climate Studies

    Get PDF
    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them: there is no central archive of geostationary data for all international satellites, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multi-satellite climate studies. The International Satellite Cloud Climatology Project set the stage for overcoming these issues by archiving a subset of the full resolution geostationary data at approx.10 km resolution at 3 hourly intervals since 1983. Recent efforts at NOAA s National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in the netCDF format using standards that permit a wide variety of tools and libraries to quickly and easily process the data. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone

    Updated merged SAGE-CCI-OMPS+ dataset for the evaluation of ozone trends in the stratosphere

    Get PDF
    In this paper, we present the updated SAGE-CCI-OMPS+ climate data record of monthly zonal mean ozone profiles. This dataset covers the stratosphere and combines measurements by nine limb and occultation satellite instruments – SAGE II (Stratospheric Aerosol and Gases Experiment II), OSIRIS (Optical Spectrograph and InfraRed Imaging System), MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), SCIAMACHY (SCanning Imaging Spectrometer for Atmospheric CHartographY), GOMOS (Global Ozone Monitoring by Occultation of Stars), ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), OMPS-LP (Ozone Monitor Profiling Suite Limb Profiler), POAM (Polar Ozone and Aerosol Measurement) III, and SAGE III/ISS (Stratospheric Aerosol and Gases Experiment III on the International Space Station). Compared to the original version of the SAGE-CCI-OMPS dataset (Sofieva et al., 2017b), the update includes new versions of MIPAS, ACE-FTS, and OSIRIS datasets and introduces data from additional sensors (POAM III and SAGE III/ISS) and retrieval processors (OMPS-LP). In this paper, we show detailed intercomparisons of ozone profiles from different instruments and data versions, with a focus on the detection of possible drifts in the datasets. The SAGE-CCI-OMPS+ dataset has a better coverage of polar regions and of the upper troposphere and the lower stratosphere (UTLS) than the previous dataset. We also studied the influence of including new datasets on ozone trends, which are estimated using multiple linear regression. The changes in the merged dataset do not change the overall morphology of post-1997 ozone trends; statistically significant trends are observed in the upper stratosphere. The largest changes in ozone trends are observed in polar regions, especially in the Southern Hemisphere

    Diverse perspectives on interdisciplinarity from the Members of the College of the Royal Society of Canada

    Get PDF
    Various multiple-disciplinary terms and concepts (although most commonly “interdisciplinarity”, which is used herein) are used to frame education, scholarship, research, and interactions within and outside academia. In principle, the premise of interdisciplinarity may appear to have many strengths; yet, the extent to which interdisciplinarity is embraced by the current generation of academics, the benefits and risks for doing so, and the barriers and facilitators to achieving interdisciplinarity represent inherent challenges. Much has been written on the topic of interdisciplinarity, but to our knowledge there have been few attempts to consider and present diverse perspectives from scholars, artists, and scientists in a cohesive manner. As a team of 57 members from the Canadian College of New Scholars, Artists, and Scientists of the Royal Society of Canada (the College) who self-identify as being engaged or interested in interdisciplinarity, we provide diverse intellectual, cultural, and social perspectives. The goal of this paper is to share our collective wisdom on this topic with the broader community and to stimulate discourse and debate on the merits and challenges associated with interdisciplinarity. Perhaps the clearest message emerging from this exercise is that working across established boundaries of scholarly communities is rewarding, necessary, and is more likely to result in impact. However, there are barriers that limit the ease with which this can occur (e.g., lack of institutional structures and funding to facilitate cross-disciplinary exploration). Occasionally, there can be significant risk associated with doing interdisciplinary work (e.g., lack of adequate measurement or recognition of work by disciplinary peers). Solving many of the world’s complex and pressing problems (e.g., climate change, sustainable agriculture, the burden of chronic disease, and aging populations) demand thinking and working across long-standing, but in some ways restrictive, academic boundaries. Academic institutions and key support structures, especially funding bodies, will play an important role in helping to realize what is readily apparent to all who contributed to this paper—that interdisciplinarity is essential for solving complex problems; it is the new norm. Failure to empower and encourage those doing this research will serve as a great impediment to training, knowledge, and addressing societal issues
    • …
    corecore