42 research outputs found

    Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance

    Get PDF
    Background and Aims Rice is one of the few crops able to withstand periods of partial or even complete submergence. One of the adaptive traits of rice is the constitutive presence and further development of aerenchyma which enables oxygen to be transported to submerged organs. The development of lysigenous aerenchyma is promoted by ethylene accumulating within the submerged plant tissues, although other signalling mechanisms may also co-exist. In this study, aerenchyma development was analysed in two rice (Oryza sativa) varieties, ‘FR13A’ and ‘Arborio Precoce’, which show opposite traits in flooding response in terms of internode elongation and survival. Methods The growth and survival of rice varieties under submergence was investigated in the leaf sheath of ‘FR13A’ and ‘Arborio Precoce’. The possible involvement of ethylene and reactive oxygen species (ROS) was evaluated in relation to aerenchyma formation. Cell viability and DNA fragmentation were determined by FDA/FM4-64 staining and TUNEL assay, respectively. Ethylene production was monitored by gas chromatography and by analysing ACO gene expression. ROS production was measured by using Amplex Red assay kit and the fluorescent dye DCFH2-DA. The expression of APX1 was also evaluated. AVG and DPI solutions were used to test the effect of inhibiting ethylene biosynthesis and ROS production, respectively. Key Results Both the varieties displayed constitutive lysigenous aerenchyma formation, which was further enhanced when submerged. ‘Arborio Precoce’, which is characterized by fast elongation when submerged, showed active ethylene biosynthetic machinery associated with increased aerenchymatous areas. ‘FR13A’, which harbours the Sub1A gene that limits growth during oxygen deprivation, did not show any increase in ethylene production after submersion but still displayed increased aerenchyma. Hydrogen peroxide levels increased in ‘FR13A’ but not in ‘Arborio Precoce’. Conclusions While ethylene controls aerenchyma formation in the fast-elongating ‘Arborio Precoce’ variety, in ‘FR13A’ ROS accumulation plays an important role

    The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients

    No full text
    Sulfur (S) is an essential macronutrient for plants, being necessary for their growth and metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is present either in one of its inorganic forms or incorporated in an organic compound. Moreover, organic S compounds may contain S in its reduced or oxidized form. Among others, S plays roles in maintaining the homeostasis of essential micronutrients, e.g., iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn). One of the most well-known connections is homeostasis between S and Fe, mainly in terms of the role of S in uptake, transportation, and distribution of Fe, as well as the functional interactions of S with Fe in the Fe-S clusters. This review reports the available information describing the connections between the homeostasis of S and Fe, Cu, Zn, and Mn in plants. The roles of S- or sulfur-derived organic ligands in metal uptake and translocation within the plant are highlighted. Moreover, the roles of these micronutrients in S homeostasis are also discussed

    New insights into trophic aerenchyma formation strategy in maize (Zea mays L.) organs during sulphate deprivation

    Get PDF
    Aerenchyma attributes plant tissues that contain enlarged spaces exceeding those commonly found as intracellular spaces. It is known that sulphur (S) deficiency leads to formation of aerenchyma in maize adventitious roots by lysis of cortical cells. Seven-day-old maize plants were grown in a hydroponics setup for nineteen days under S deprivation against full nutrition. At day 17 and 26 from sowing (d10 and d19 of the deprivation respectively), a detailed analysis of the total sulfur and sulfate allocation among organs as well as a morphometric characterization were performed. Apart from roots, in S-deprived plants aerenchyma formation was additionally found in the 2nd leaf and in the mesocotyl, too. The lamina of this leaf showed enlarged gas spaces between the intermediate and small vascular bundles by lysis of mesophyll cells and to a greater extent on the d10 compared to d19. Aerenchymatous spaces were mainly distributed along the middle region of leaf axis. At d10, –S leaves invested less dry mass with more surface area, whilst lesser dry mass was invested per unit surface area in –S laminas. In the mesocotyl, aerenchyma was located near the scutellar node, where mesocotyl roots were developing. In –S roots, more dry mass was invested per unit length. Our data suggest that trying to utilize the available scarce sulfur in an optimal way, the S-deprived plant fine tunes the existing roots with the same length or leaves with more surface area per unit of dry mass. Aerenchyma was not found in the scutelar node and the bases of the attached roots. The sheaths, the laminas’ bases and the crown did not form aerenchyma. This trophic aerenchyma is a localized one, presumably to support new developing tissues nearby by induced cell death and recycling of the released material. Reduced sulfur allocation among organs followed that of dry mass in a proportional fashion

    Impact of Elemental Sulfur on the Rhizospheric Bacteria of Durum Wheat Crop Cultivated on a Calcareous Soil

    No full text
    Previous experiments have shown that the application of fertilizer granules containing elemental sulfur (S0) as an ingredient (FBS0) in durum wheat crops produced a higher yield than that produced by conventional ones (F), provided that the soils of the experimental fields (F vs. FBS0) were of comparable quality and with the Olsen P content of the field’s soil above 8 mg kg−1. In this experiment the FBS0 treatment took place in soil with Olsen P at 7.8 mg kg−1, compared with the F treatment’s soil with Olsen P of 16.8 mg kg−1, aiming at reducing the imbalance in soil quality. To assess and evaluate the effect of FBS0 on the dynamics of the rhizospheric bacteria in relation to F, rhizospheric soil at various developmental stages of the crops was collected. The agronomic profile of the rhizospheric cultivable bacteria was characterized and monitored, in connection with the dynamics of phosphorus, iron, organic sulfur, and organic nitrogen, in both the rhizosoil and the aerial part of the plant during development. Both crops were characterized by a comparable dry mass accumulation per plant throughout development, while the yield of the FBS0 crop was 3.4% less compared to the F crop’s one. The FBS0 crop’s aerial part showed a transient higher P and Fe concentration, while its organic N and S concentrations followed the pattern of the F crop. The incorporation of S0 into the conventional fertilizer increased the percentage of arylsulfatase (ARS)-producing bacteria in the total bacterial population, suggesting an enhanced release of sulfate from the soil’s organic S pool, which the plant could readily utilize. The proportion of identified ARS-producing bacteria possessing these traits exhibited a maximum value before and after topdressing. Phylogenetic analysis of the 68 isolated ARS-producing bacterial strains revealed that the majority of the isolates belonged to the Pseudomonas genus. A large fraction also possessed phosphate solubilization, and/or siderophore production, and/or ureolytic traits, thus improving the crop’s P, Fe, S, and N balance. The aforementioned findings imply that the used FBS0 substantially improved the quality of the rhizosoil at the available phosphorus limiting level by modulating the abundance of the bacterial communities in the rhizosphere and effectively enhancing the microbially mediated nutrient mobilization towards improved plant nutritional dynamics

    Phenotypic Acclimation of Maize Plants Grown under S Deprivation and Implications to Sulfur and Iron Allocation Dynamics

    No full text
    The aim of this work was to study maize root phenotype under sulfur deficiency stress towards revealing potential correlations between the altered phenotypic traits and the corresponding dry mass, sulfur, and iron allocation within plants at the whole-plant level. The dynamics of root morphological and anatomical traits were monitored. These traits were then correlated with plant foliage traits along with dry mass and sulfur and iron allocation dynamics in the shoot versus root. Plants grown under sulfate deprivation did not seem to invest in new root axes. Crown roots presented anatomical differences in all parameters studied; e.g., more and larger xylem vessels in order to maximize water and nutrient transport in the xylem sap. In the root system of S-deficient plants, a reduced concentration of sulfur was observed, whilst organic sulfur predominated over sulfates. A reduction in total iron concentration was monitored, and differences in its subcellular localization were observed. As expected, S-deprivation negatively affected the total sulfur concentration in the aerial plant part, as well as greatly impacted iron allocation in the foliage. Phenotypic adaptation to sulfur deprivation in maize presented alterations mainly in the root anatomy; towards competent handling of the initial sulfur and the induced iron deficiencies

    Effect of Elemental Sulfur as Fertilizer Ingredient on the Mobilization of Iron from the Iron Pools of a Calcareous Soil Cultivated with Durum Wheat and the Crop's Iron and Sulfur Nutrition

    No full text
    The granules of conventional fertilizers have been enriched recently with 2% elemental sulfur (S-0) via a binding material of organic nature and such fertilizers are suitable for large scale agriculture. In a previous work, we demonstrated that a durum wheat crop that received the enriched fertilization scheme (FBS0-crop) accumulated a higher amount of Fe compared to the durum wheat crop fertilized by the corresponding conventional fertilization scheme (F-crop). In this study, we investigated the effect of S-0 on the contingent mobilization of iron from the iron pools of the calcareous field that affiliated the durum wheat crop and the corresponding effect on the crop's iron nutrition and sulfur nutrition. A sequential extraction of Fe from root zone soil (rhizosoil) was applied and the fluctuations of these fractions during crop development were monitored. The fertilization with FBS0 at sowing affected the iron fractions of the rhizosoil towards iron mobilization, thus providing more iron to the crop, which apart from the iron nutrition fortified the crop's sulfur nutrition, too. No iron was found as iron attached to carbonates of the rhizosoil. Fluctuations of the iron pool, bound or adsorbed to the organic matter, were exactly the opposite to those of the iron pool associated with the clay particles in both treatments, suggesting iron exchange between the two pools. Replenishment of the F-crop's Fe content and a deficit in the FBS0-crop's Fe content in the rhizosoil were found at the end of the cultivation period. Furthermore, the initiation of the fast stem elongation stage (day 125) constituted a turning point. Before day 125, the use of FBS0 increased the iron concentration in the main stems and this was an early fortification effect, followed by an increase in the organic S concentration. Following day 125, the FBS0-crop consisted of plants with higher main stems and less tillers. A late fortification effect was observed in the iron concentration of the main stems and their heads after the stage of complete flowering. Prior to harvesting in the FBS0-crop, all plant parts were heavier, with more iron and organic sulfur accumulated in these plant parts, and the obtained commercial yield of the FBS0-crop was higher by 27.3%
    corecore