3,590 research outputs found

    Specific heat of single crystal MgB_2: a two-band superconductor with two different anisotropies

    Full text link
    Heat-capacity measurements of a 39 microgramm MgB_2 single crystal in fields up to 14 T and below 3 K allow the determination of the low-temperature linear term of the specific heat, its field dependence and its anisotropy. Our results are compatible with two-band superconductivity, the band carrying the small gap being isotropic, that carrying the large gap having an anisotropy of ~ 5. Three different upper critical fields are thus needed to describe the superconducting state of MgB2.Comment: 4 pages, 4 figures - V2: Bibliography updated and some typo corrected. One reference added - V3: version accepted for publication in PRL, changes made in the tex

    Dynamical stability for the gravitational evolution of a homogeneous polytrope

    Get PDF
    URL: http://www-spht.cea.fr/articles/s00/008 Stabilité dynamique de l'évolution gravitationnelle d'un polytrope homogèneThe dynamic stability of the spherical gravitational evolution (collapse or expansion) for a homogeneous polytropic gas with any exponent γ,\gamma , is studied using the lagrangian formalism. We obtain the analytical expression for density perturbations at the first order. In the case γ= 4/3,\gamma =~4/3, the Jeans'criterion is easily generalized to a self-similar expanding background. The collapsing case is found to be always unstable. The stability of density modes obtained for γ4/3\gamma \not = 4/3 does not introduce any conditions on the wavelength perturbation, but only a criterion on the polytropic index. As a result, stability is obtained for an expanding gas provided $\gamma 5/3.

    Metagenomic-based Surveillance of Pacific Coast tick Dermacentor occidentalis Identifies Two Novel Bunyaviruses and an Emerging Human Ricksettsial Pathogen.

    Get PDF
    An increasing number of emerging tick-borne diseases has been reported in the United States since the 1970s. Using metagenomic next generation sequencing, we detected nucleic acid sequences from 2 novel viruses in the family Bunyaviridae and an emerging human rickettsial pathogen, Rickettsia philipii, in a population of the Pacific Coast tick, Dermacentor occidentalis in Mendocino County sampled annually from 2011 to 2014. A total of 250 adults of this human-biting, generalist tick were collected from contiguous chaparral and grassland habitats, and RNA from each individually extracted tick was deep sequenced to an average depth of 7.3 million reads. We detected a Francisella endosymbiont in 174 ticks (70%), and Rickettsia spp. in 19 ticks (8%); Rickettsia-infected ticks contained R. rhipicephali (16 of 250, 6.4%) or R. philipii (3 of 250,1.2%), the agent of eschar-associated febrile illness in humans. The genomes of 2 novel bunyaviruses (>99% complete) in the genera Nairovirus and Phlebovirus were also identified and found to be present in 20-91% of ticks, depending on the year of collection. The high prevalence of these bunyaviruses in sampled Dermacentor ticks suggests that they may be viral endosymbionts, although further studies are needed to determine whether they are infectious for vertebrate hosts, especially humans, and their potential role in tick ecology

    Similarity Properties and Scaling Laws of Radiation Hydrodynamic Flows in Laboratory Astrophysics

    Get PDF
    The spectacular recent development of modern high-energy density laboratory facilities which concentrate more and more energy in millimetric volumes allows the astrophysical community to reproduce and to explore, in millimeter-scale targets and during very short times, astrophysical phenomena where radiation and matter are strongly coupled. The astrophysical relevance of these experiments can be checked from the similarity properties and especially scaling laws establishment, which constitutes the keystone of laboratory astrophysics. From the radiating optically thin regime to the so-called optically thick radiative pressure regime, we present in this paper, for the first time, a complete analysis of the main radiating regimes that we encountered in laboratory astrophysics with the same formalism based on the Lie-group theory. The use of the Lie group method appears as systematic which allows to construct easily and orderly the scaling laws of a given problem. This powerful tool permits to unify the recent major advances on scaling laws and to identify new similarity concepts that we discuss in this paper and which opens important applications for the present and the future laboratory astrophysics experiments. All these results enable to demonstrate theoretically that astrophysical phenomena in such radiating regimes can be explored experimentally thanks to powerful facilities. Consequently the results presented here are a fundamental tool for the high-energy density laboratory astrophysics community in order to quantify the astrophysics relevance and justify laser experiments. Moreover, relying on the Lie-group theory, this paper constitutes the starting point of any analysis of the self-similar dynamics of radiating fluids.Comment: Astrophys. J. accepte

    Anisotropic properties of MgB2 by torque magnetometry

    Full text link
    Anisotropic properties of superconducting MgB2 obtained by torque magnetometry are compared to theoretical predictions, concentrating on two issues. Firstly, the angular dependence of Hc2 is shown to deviate close to Tc from the dependence assumed by anisotropic Ginzburg-Landau theory. Secondly, from the evaluation of torque vs angle curves it is concluded that the anisotropy of the penetration depth gamma_lambda has to be substantially higher at low temperature than theoretical estimates, at least in fields higher than 0.2 T.Comment: 2 p.,2 Fig., submitted to Physica C (M2S-Rio proceedings); v2: 1 ref adde

    Effect of density of state on isotope effect exponent of two-band superconductors

    Full text link
    The exact formula of Tc's equation and the isotope effect exponent of two-band s-wave superconductors in weak-coupling limit are derived by considering the influence of two kinds of density of state : constant and van Hove singularity. The pairing interaction in each band consisted of 2 parts : the electron-phonon interaction and non-electron-phonon interaction are included in our model. We find that the interband interaction of electron-phonon show more effect on isotope exponent than the intraband interaction and the isotope effect exponent with constant density of state can fit to an experimental data,MgB2, and high-Tc superconductors, better than van Hove singularity density of state.Comment: 11 pages. accepted in Physica

    Fermi surface topology and vortex state in MgB2

    Full text link
    Based on a detailed modeling of the Fermi surface topology of MgB2 we calculated the anisotropy of the upper critical field Bc2 within the two gap model. The sigma-band is modeled as a distorted cylinder and the pi-band as a half-torus, with parameters determined from bandstructure calculations. Our results show that the unusual strong temperature dependence of the Bc2 anisotropy, that has been observed recently, can be understood due to the small c-axis dispersion of the cylindrical Fermi surface sheets and the small interband pairing interaction as obtained from bandstructure calculations. We calculate the magnetic field dependence of the density of states within the vortex state for field in c-axis direction and compare with recent measurements of the specific heat on MgB2 single crystals.Comment: 2 pages, 2 figure

    Specific heat of MgB_2 after irradiation

    Full text link
    We studied the effect of disorder on the superconducting properties of polycrystalline MgB_2 by specific-heat measurements. In the pristine state, these measurements give a bulk confirmation of the presence of two superconducting gaps with 2 Delta 0 / k_B T_c = 1.3 and 3.9 with nearly equal weights. The scattering introduced by irradiation suppresses T_c and tends to average the two gaps although less than predicted by theory. We also found that by a suitable irradiation process by fast neutrons, a substantial bulk increase of dH_{c2}/dT at T_c can be obtained without sacrificing more than a few degrees in T_c. The upper critical field of the sample after irradiation exceeds 28 T at T goes to 0 K.Comment: 11 pages text, 6 figures, accepted by Journal of Physics: Condensed Matte

    Magnetic properties of two-phase superconductors

    Full text link
    We have recently proposed a theoretical model for superconductors endowed with two distinct superconducting phases, described by two scalar order parameters which condensate at different critical temperatures. On analyzing the magnetic behavior of such systems, we have found some observable differences with respect to the case of ordinary Ginzburg-Landau superconductors. In particular, at low temperature the London penetration length is strongly reduced and the Ginzburg-Landau parameter k becomes a function of temperature. By contrast, in the temperature region between the two phase transitions k is constant and the system is a type-I or a type-II superconductor depending on the ratio between the critical temperatures.Comment: revtex, 5 pages, 1 eps figur

    Non-stationary Rayleigh-Taylor instability in supernovae ejecta

    Get PDF
    The Rayleigh-Taylor instability plays an important role in the dynamics of several astronomical objects, in particular, in supernovae (SN) evolution. In this paper we develop an analytical approach to study the stability analysis of spherical expansion of the SN ejecta by using a special transformation in the co-moving coordinate frame. We first study a non-stationary spherical expansion of a gas shell under the pressure of a central source. Then we analyze its stability with respect to a no radial, non spherically symmetric perturbation of the of the shell. We consider the case where the polytropic constant of the SN shell is γ=5/3\gamma=5/3 and we examine the evolution of a arbitrary shell perturbation. The dispersion relation is derived. The growth rate of the perturbation is found and its temporal and spatial evolution is discussed. The stability domain depends on the ejecta shell thickness, its acceleration, and the perturbation wavelength.Comment: 16 page
    corecore