241 research outputs found

    Relevance of large litter bag burial for the study of leaf breakdown in the hyporheic zone

    Get PDF
    Particulate organic matter is the major source of energy for most low-order streams, but a large part of this litter is buried within bed sediment during floods and thus become poorly available for benthic food webs. The fate of this buried litter is little studied. In most cases, measures of breakdown rates consist of burying a known mass of litter within the stream sediment and following its breakdown over time. We tested this method using large litter bags (15 x 15 cm) and two field experiments. First, we used litter large bags filled with Alnus glutinosa leaves (buried at 20 cm depth with a shovel) in six stations within different land-use contexts and with different sediment grain sizes. Breakdown rates were surprisingly high (0.0011–0.0188 day-1) and neither correlate with most of the physico-chemical characteristics measured in the interstitial habitats nor with the land-use around the stream. In contrast, the rates were negatively correlated with a decrease in oxygen concentrations between surface and buried bags and positively correlated with both the percentage of coarse particles (20–40 mm) in the sediment and benthic macro-invertebrate richness. These results suggest that the vertical exchanges with surface water in the hyporheic zone play a crucial role in litter breakdown. Second, an experimental modification of local sediment (removing fine particles with a shovel to increase vertical exchanges) highlighted the influence of grain size on water and oxygen exchanges, but had no effect on hyporheic breakdown rates. Burying large litter bags within sediments may thus not be a relevant method, especially in clogged conditions, due to changes induced through the burial process in the vertical connectivity between surface and interstitial habitats that modify organic matter processing

    A structural comparison of human serum transferrin and human lactoferrin

    Get PDF
    The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences

    Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells

    Get PDF
    Heterochromatin maintains genome integrity and function, and is organised into distinct nuclear domains. Some of these domains are proposed to form by phase separation through the accumulation of HP1ɑ. Mouse heterochromatin contains noncoding major satellite repeats (MSR), which are highly transcribed in mouse embryonic stem cells (ESCs). Here, we report that MSR transcripts can drive the formation of HP1ɑ droplets in vitro, and modulate heterochromatin into dynamic condensates in ESCs, contributing to the formation of large nuclear domains that are characteristic of pluripotent cells. Depleting MSR transcripts causes heterochromatin to transition into a more compact and static state. Unexpectedly, changing heterochromatin’s biophysical properties has severe consequences for ESCs, including chromosome instability and mitotic defects. These findings uncover an essential role for MSR transcripts in modulating the organisation and properties of heterochromatin to preserve genome stability. They also provide insights into the processes that could regulate phase separation and the functional consequences of disrupting the properties of heterochromatin condensates

    Freshwater shrimp (Palaemonetes australis) as a potential bioindicator of crustacean health

    Get PDF
    Palaemonetes australis is a euryhaline shrimp found in south-western Australian estuaries. To determine if P. australis is a suitable bioindicator species for monitoring the health of estuarine biota, they were exposed to measured concentrations of the polycyclic aromatic hydrocarbon, benzo[a]pyrene (B[a]P) at 0.01, 0.1 or 1 ppm for 14 days under laboratory conditions. At the end of exposure the shrimp were sacrificed for biomarker [ethoxycoumarin O-deethylase (ECOD), 8-oxo-dG concentration, and sorbitol dehydrogenase (SDH) activity] analyses. Gender did not appear to influence biomarker responses of the shrimp in this study. ECOD activity was induced in the treatment groups in a linear fashion from 3 (0.01 ppm) times to 12 (1 ppm) times the negative controls. 8-oxo-dG concentration was reduced 3 times in treatment groups below the controls suggesting impaired DNA repair pathways. There was no increase in SDH, signifying hepatopancreatic cell damage had not occurred in any treatment group. The response of P australis to B[a]P exposure indicates that this crustacean is suitable bioindicator species for both laboratory studies and field monitoring. A combination of ECOD and SDH activities and 8-oxo-dG concentration represent a suitable suite of biomarkers for environmental monitoring of the sublethal effects of organic pollution to crustaceans from an estuarine environment

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    A questionnaire for determining prevalence of diabetes related foot disease (Q-DFD): construction and validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Community based prevalence for diabetes related foot disease (DRFD) has been poorly quantified in Australian populations. The aim of this study was to develop and validate a survey tool to facilitate collection of community based prevalence data for individuals with DRFD via telephone interview.</p> <p>Methods</p> <p>Agreed components of DRFD were identified through an electronic literature search. Expert feedback and feedback from a population based construction sample were sought on the initial draft. Survey reliability was tested using a cohort recruited through a general practice, a hospital outpatient clinic and an outpatient podiatry clinic. Level of agreement between survey findings and either medical record or clinical assessment was evaluated.</p> <p>Results</p> <p>The Questionnaire for Diabetes Related Foot Disease (Q-DFD) comprised 12 questions aimed at determining presence of peripheral sensory neuropathy (PN) and peripheral vascular disease (PVD), based on self report of symptoms and/or clinical history, and self report of foot ulceration, amputation and foot deformity. Survey results for 38 from 46 participants demonstrated agreement with either clinical assessment or medical record (kappa 0.65, sensitivity 89.0%, and specificity 77.8%). Correlation for individual survey components was moderate to excellent. Inter and intrarater reliability and test re-test reliability was moderate to high for all survey domains.</p> <p>Conclusion</p> <p>The development of the Q-DFD provides an opportunity for ongoing collection of prevalence estimates for DRFD across Australia.</p

    Hemorrhage-Adjusted Iron Requirements, Hematinics and Hepcidin Define Hereditary Hemorrhagic Telangiectasia as a Model of Hemorrhagic Iron Deficiency

    Get PDF
    BACKGROUND: Iron deficiency anemia remains a major global health problem. Higher iron demands provide the potential for a targeted preventative approach before anemia develops. The primary study objective was to develop and validate a metric that stratifies recommended dietary iron intake to compensate for patient-specific non-menstrual hemorrhagic losses. The secondary objective was to examine whether iron deficiency can be attributed to under-replacement of epistaxis (nosebleed) hemorrhagic iron losses in hereditary hemorrhagic telangiectasia (HHT). METHODOLOGY/PRINCIPAL FINDINGS: The hemorrhage adjusted iron requirement (HAIR) sums the recommended dietary allowance, and iron required to replace additional quantified hemorrhagic losses, based on the pre-menopausal increment to compensate for menstrual losses (formula provided). In a study population of 50 HHT patients completing concurrent dietary and nosebleed questionnaires, 43/50 (86%) met their recommended dietary allowance, but only 10/50 (20%) met their HAIR. Higher HAIR was a powerful predictor of lower hemoglobin (p = 0.009), lower mean corpuscular hemoglobin content (p<0.001), lower log-transformed serum iron (p = 0.009), and higher log-transformed red cell distribution width (p<0.001). There was no evidence of generalised abnormalities in iron handling Ferritin and ferritin(2) explained 60% of the hepcidin variance (p<0.001), and the mean hepcidinferritin ratio was similar to reported controls. Iron supplement use increased the proportion of individuals meeting their HAIR, and blunted associations between HAIR and hematinic indices. Once adjusted for supplement use however, reciprocal relationships between HAIR and hemoglobin/serum iron persisted. Of 568 individuals using iron tablets, most reported problems completing the course. For patients with hereditary hemorrhagic telangiectasia, persistent anemia was reported three-times more frequently if iron tablets caused diarrhea or needed to be stopped. CONCLUSIONS/SIGNIFICANCE: HAIR values, providing an indication of individuals' iron requirements, may be a useful tool in prevention, assessment and management of iron deficiency. Iron deficiency in HHT can be explained by under-replacement of nosebleed hemorrhagic iron losses

    Autophagy and Exosomes in the Aged Retinal Pigment Epithelium: Possible Relevance to Drusen Formation and Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch's membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch's membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1) increased autophagic markers, 2) decreased lysosomal activity, 3) increased exocytotic activity and 4) release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly
    corecore