361 research outputs found

    Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells

    Get PDF
    Cold start of proton exchange membrane fuel cells (PEMFCs) at sub-zero temperatures is perceived as one of the obstacles in their commercialization way in automotive application. This paper proposes a novel internal-based adaptive strategy for the cold start of PEMFC to control its operating current in real time in a way to maximize the generated heat flux and electrical power in a short time span. In this respect, firstly, an online parameter identification method is integrated into a semi-empirical model to cope with the PEMFC performances drifts during cold start. Subsequently, an optimization algorithm is launched to find the best operating points from the updated model. Finally, the determined operating point, which is the current corresponding to the maximum power, is applied to PEMFC to achieve a rapid cold start. It should be noted that the utilization of adaptive filters has escaped the attention of previous PEMFC cold start studies. The ultimate results of the proposed strategy are experimentally validated and compared to the most commonly used cold start strategies based on Potentiostatic and Galvanostatic modes. The experimental outcomes of the comparative study indicate the striking superior performance of the proposed strategy in terms of heating time and energy requirement. © 2018 Elsevier Lt

    Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies

    Get PDF
    This paper studies the impact of two significant aspects, namely fuel cell (FC) degradation and thermal management, over the performance of an optimal and a rule-based energy management strategy (EMS) in a fuel cell hybrid electric vehicle (FCHEV). To do so, firstly, a vehicle's model is developed in simulation environment for a low-speed FCHEV composed of a FC stack and a battery pack. Subsequently, deterministic dynamic programming (DP), as an optimal strategy, and bounded load following strategy (BLFS), as a common rule-based strategy, are utilized to minimize the hydrogen consumption while respecting the operating constraints of the power sources. The performance of the EMSs is assessed at different scenarios. The first objective is to clarify the effect of FC stack degradation on the performance of the vehicle. In this regard, each EMS determines the required current from the FC stack for two FCs with different levels of degradation. The second objective is to evaluate the thermal management contribution to improving the performance of the new FC compared to the considered cases in scenario one. In this respect, each strategy deals with determining two control variables (FC current and cooling fan duty cycle). The results of this study indicate that negligence of adapting to the PEMFC health state, as the PEMFC gets aged, can increase the hydrogen consumption up to 24.8% in DP and 12.1% in BLFS. Moreover, the integration of temperature dimension into the EMS can diminish the hydrogen consumption by 4.1% and 5.3% in DP and BLFS respectively. © 2020 Elsevier Lt

    Efficient model selection for real-time adaptive cold start strategy of a fuel cell system on vehicular applications

    Get PDF
    The PEMFC maximum power is greatly influenced by subfreezing temperature and degradation phenomena. Therefore, a dependable model is required to estimate the power with respect to the variation of the operating conditions and state of health. Semi-empirical models are potent tools in this regard. Nonetheless, there is not much information about their cold environment reliability. This paper comprehensively compares the performance of some models (already tested in normal ambient temperature) in subfreezing condition to introduce the most reliable one for PEMFC cold start-up application. Firstly, seven models are compared regarding voltage losses and precision. Subsequently, the three most dependable ones are selected and experimentally compared at sub-zero temperature in terms of polarization curve estimation for three PEMFCs with different degradation levels. The results of this study indicate that the model introduced by Amphlett et al. has a superior performance compared to other ones regarding the characteristic's estimation in below-zero temperature

    Comparative analysis of two online identification algorithms in a fuel cell system

    Get PDF
    Output power of a fuel cell (FC) stack can be controlled through operating parameters (current, temperature, etc.) and is impacted by ageing and degradation. However, designing a complete FC model which includes the whole physical phenomena is very difficult owing to its multivariate nature. Hence, online identification of a FC model, which serves as a basis for global energy management of a fuel cell vehicle (FCV), is considerably important. In this paper, two well-known recursive algorithms are compared for online estimation of a multi-input semi-empirical FC model parameters. In this respect, firstly, a semi-empirical FC model is selected to reach a satisfactory compromise between computational time and physical meaning. Subsequently, the algorithms are explained and implemented to identify the parameters of the model. Finally, experimental results achieved by the algorithms are discussed and their robustness is investigated. The ultimate results of this experimental study indicate that the employed algorithms are highly applicable in coping with the problem of FC output power alteration, due to the uncertainties caused by degradation and operation condition variations, and these results can be utilized for designing a global energy management strategy in a FCV. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Proton exchange membrane fuel cell operation and degradation in short-circuit.

    Get PDF
    International audienceThis paper presents an experimental study dealing with operation and degradation during an electrical short circuit of a proton exchange membrane fuel cell stack. The physical quantities in the fuel cell (electrical voltage and current, gas stoichiometry, pressures, temperatures and gas humidity) are studied before, during and after the failure. After a short circuit occurs, a high peak of current appears but decreases to stabilize in a much lower value. The voltage drops in all the cells and even some cells presents reversal potentials. The degradation is quantified by using electrochemical impedance spectroscopy

    An online self cold startup methodology for PEM fuel cells in vehicular applications

    Get PDF
    This paper puts forward an adaptive cold start strategy for a proton exchange membrane fuel cell (PEMFC) based on maximum power mode. The proposed strategy consists of a water evacuation process after PEMFC shutdown and a self-heating process at PEMFC cold startup. To maximize the performance of the suggested strategy, an optimal operating condition for the cold start procedure is sought first. In this respect, an experimental parametric study is performed to explore the impact of fan velocity, micro-short circuit, anode pressure, and purge procedure on the PEMFC cold start performance. After laying down the proper conditions, the proposed cold start procedure is implemented on a test bench for experimental validations. The self-heating process is based on an online adaptive algorithm that maximizes the PEMFC's internal heat depending on its operating parameters' variation. In fact, this algorithm attempts to keep the current density at high levels, leading to PEMFC's performance improvement achieved by membrane hydration and temperature increase. The experimental results confirm the effectiveness of the proposed strategy, which presents a fast and cost-effective PEMFC's cold start. © 2020 IEEE

    Efficiency enhancement of an open cathode fuel cell through a systemic management

    Get PDF
    This paper addresses the design of a systemic management to improve the energetic efficiency of an open cathode proton exchange membrane fuel cell (PEMFC) in a hybrid system. Unlike the other similar works, the proposed approach capitalizes on the usage of both thermal management strategy and current control to meet the requested power from the system by the minimum fuel consumption. To do so, firstly, an experimentally based 3D mapping is performed to relate the requested power form the PEMFC to its operating temperature and current. Secondly, the reference temperature which leads to gaining the demanded power by the minimum current level is determined to minimize the hydrogen consumption. Finally, the temperature control is formulated by an optimized fuzzy logic scheme to reach the determined reference temperature by acting on the cooling fan of the PEMFC system, whilst the current is being regulated by its controller. The inputs of the fuzzy controller are the PEMFC current and temperature error and the sole output is the duty factor of the fan. The proposed methodology is tested on an experimental test bench to be better evaluated in a real condition. The obtained results from the proposed systemic management indicate promising enhancement of the system efficiency compared to a commercial controller. The proposed method of this work is extendable and applicable in fuel cell hybrid electric vehicles

    Modélisation constitutive du comportement cyclique des sables en condition drainée

    Get PDF
    Dans cette étude, une modélisation numérique simple du comportement des sables sous chargement cyclique est proposée ; la démarche proposée consiste, en condition drainée, à déterminer les paramètres caractérisant le chemin cyclique moyen du sol sous l’'effet de N cycles dûment caractérisés, et à traduire l'’effet cyclique par une déformation volumique cumulée ainsi que par une variation de module du sol. Dans cette étude on s’'intéresse à des essais triaxiaux cycliques simulés au moyen d’'un calcul en éléments finis utilisant le programme Plaxis. On détermine les paramètres d’'identification du premier cycle (charge-décharge) réalisé pas à pas en prenant, comme modèle de comportement du sol le modèle HSM. Puis le comportement après N cycles (N>1000) est simulé par la formulation proposée comme un pseudo-fluage. La comparaison de la méthode proposée à plusieurs essais triaxiaux cycliques confirme la bonne adaptation du modèle proposé à ce type de problème

    Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms

    Get PDF
    Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect candidates for this purpose since they do an informed search for finding the parameters. This paper utilizes three algorithms, namely shuffled frog-leaping algorithm (SFLA), firefly optimization algorithm (FOA), and imperialist competitive algorithm (ICA) for the PEMFC model calibration. In this regard, firstly, the algorithms are employed to find the parameters of a benchmark PEMFC model by minimizing the sum of squared errors (SSE) between the measured and estimated voltage for two available case studies in the literature. After conducting 100 independent runs, the algorithms are compared in terms of the best and the worst SSEs, the variance, and standard deviation. This comparison indicates that SFLA marginally outperforms ICA and FOA regarding the best SSE in both cases while it performs 20% and twofold better than other algorithms concerning the worst SSE. Furthermore, the obtained variance and standard deviation by SFLA are much less than the other algorithms showing the precision and repeatability of this method. Finally, SFLA is used to calibrate the model for a new case study (Horizon 500-W PEMFC) with variable temperature. © 2019 Elsevier Lt
    • …
    corecore