
1 

Abstract — Cold start of proton exchange membrane fuel cells (PEMFCs) at sub-zero temperatures is 

perceived as one of the obstacles in their commercialization way in automotive application. This paper 

proposes a novel internal-based adaptive strategy for the cold start of PEMFC to control its operating current 

in real time in a way to maximize the generated heat flux and electrical power in a short time span. In this 

respect, firstly, an online parameter identification method is integrated into a semi-empirical model to cope 

with the PEMFC performances drifts during cold start. Subsequently, an optimization algorithm is launched 

to find the best operating points from the updated model. Finally, the determined operating point, which is 

the current corresponding to the maximum power, is applied to PEMFC to achieve a rapid cold start. It 

should be noted that the utilization of adaptive filters has escaped the attention of previous PEMFC cold start 

studies. The ultimate results of the proposed strategy are experimentally validated and compared to the most 

commonly used cold start strategies based on Potentiostatic and Galvanostatic modes. The experimental 

outcomes of the comparative study indicate the striking superior performance of the proposed strategy in 

terms of heating time and energy requirement.  

Index Terms— Cold start, Proton Exchange Membrane Fuel Cell, Experimental approach, Adaptive 

strategies, Online identification. 

1. INTRODUCTION

Passenger cars have been voiced as the most significant sources of transportation-related greenhouse gas 

emission. In this light, substituting fossil fuel-powered vehicles by green ones is an important measure to 

tackle this worldwide issue [1]. Electric and hybrid electric vehicles could be appropriate solutions. 

However, the latter still relies on fossil fuels and the former suffers from restricted driving range as well 

as long charging time. These pitfalls have paved the way for the emergence of fuel cell vehicles (FCVs). 

FCVs do not have the limitations of their competitors and benefit from definite merits, such as high 

efficiency, pollution free essence, and convenient maintenance, by comparison [2]. Among various types 

of fuel cells, PEMFC is regarded as the most potential one for automotive applications owing to its distinct 
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features such as high efficiency, high power density, and quick response [3]. FCVs have not nevertheless 

achieved their utmost market development in the automotive industry yet due to some barriers such as 

confined hydrogen and its infrastructure availability, high price, and limited extreme cold weather 

condition employment [4].The limitation of using PEMFCs in cold weather countries is mainly due to the 

well-known cold start problem [5]. Several researches have been conducted on the freezing mechanisms 

in PEMFCs. It has been found that the produced water inside the PEMFC freezes mainly in the cathode, 

which can prevent the passage of oxygen, increase membrane resistance and decrease the cathodic 

oxidation reaction [6-9]. These phenomena cause a significant voltage drop and fail the cold start [10-12]. 

The PEMFC cold start can be perceived as an interaction between the water produced by the 

electrochemical reaction and the required heat for warming up the cell [13]. If the produced water cannot 

be sufficiently removed and the generated heat is insufficient to raise PEMFC temperature above the 

freezing point, ice formation occurs in the cathode catalyst and gas transfer channels, resulting in cold start 

failure and PEMFC degradation [10, 14, 15]. In this regard, new purge and heating solutions, as shown in 

Fig. 1, have been recently developed to prevent the PEMFC from ice formation and develop cold start 

strategies [16]. Cold start strategies fall into two categories of Keep Warm and Thaw at Start. Keep Warm 

strategies revolve around the idea of heating the PEMFC during parking to avoid freezing [17-20]. Thaw 

at Start strategies are chiefly based on heating the PEMFC at start-up to raise its temperature above zero 

[21-36]. The previous work of the authors, regarding the comparison of the above-mentioned strategies, 

shows that Thaw at Start strategies are more adapted to be used for the cold start of private PEMFC 

vehicles, in which the parking time is almost unpredictable [37]. The Thaw at Start approaches fall into 

two groups according to their heating source. The first one, which is known as Assisted Cold Start 

strategies, uses an external heating source to generate heat and delivers it into the stack through a heat 

transfer medium [16]. The methods based on this group can be effective in terms of start-up time [22, 25, 

27, 28, 34, 38]. However, adding heating material impacts the volume, weight, cost and energy efficiency 

of a PEMFC system [16]. In this regard, the second group, which is called Self-Cold Start strategies, has 

been introduced to compensate for the shortcoming of the first group.  Self-Cold Start strategies mainly 

follow a two-stage procedure of purging during the shutdown, to prevent water accumulation and thus ice 

formation in the cathode catalyst layer, and internal-based heating during the start-up. The internal heating 

methods utilize the heat generated by the exothermic reaction and can be grouped into three sorts. The first 

one fixes current density (Galvanostatic startup) or cell voltage (Ptentiostatic startup), which favors the 
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production of the heat in the PEMFC. The second one, called Reactant Starvation, has an effect on 

stoichiometry and current density, and the third one employs a mixture of Oxygen/Hydrogen (O2/H2), 

methanol, or ethanol to increase the stack temperature (Fig. 1). Among the internal heating solutions, 

Galvanostatic and Potentiostatic startups are the most commonly used solutions, and it is claimed that they 

are very effective in terms of energy requirement and system cost [16]. Lin et al. [30] and Hishinuma et al. 

[35] propose a Self-Cold Start strategy which consists in purging the PEMFC at shutdown and using the 

Galvanostatic solution at startup to heat the PEMFC. This strategy is effective for a cold start from -5°C 

but ineffective for lower temperatures. Guo et al. [26] attempt to increase the heat flux supplied by the 

Galvanostatic solution by introducing an O2/H2 mixture on the anode side in order to provide a Self-Cold 

Start strategy from -20°C. This strategy requires a modification of the PEMFC system, and its 

performances depend strongly on the state of the PEMFC (temperature, membrane hydration, degradation). 

Another Self-Cold Start strategy, proposed in [21, 23, 31, 33], consists in purging the PEMFC at shut-

down and using Potentiostatic mode at startup to escalate PEMFC temperature. This strategy is proven to 

be effective at cold start from -20°C, but its performances rely highly on the state of the PEMFC. Jiang et 

al. [32] and Gwak et al. [36] aim at optimizing Self-Cold Start strategies by suggesting to purge the PEMFC 

at shut-down and imposing a linear increase in current density at startup. The performance of this strategy 

is dependent on the membrane hydration and the PEMFC thermal mass [32]. Jian et al. [21] have compared  

Potentiostatic and Galvanostatic solutions and concluded that the former one is more advantageous than 

the latter regarding the heating time and energy requirements. In the light of the discussed articles, it can 

be concluded that the Potentiostatic based cold start solution is one of the best methodologies which has 

been proposed so far in terms of energy requirements and system cost. However, it has still a long way to 

go for automotive applications due to the several limitations such as demanding procedure for determining 

the required value of voltage, dependence on the states of the PEMFC, and being incapable of adapting to 

degradation and operating conditions variations.  

The main contribution of this work is to put forward a novel adaptive cold start strategy in order to cope 

with the discussed shortcomings, such as fuel cell parameters variations, and also to ameliorate the cold 

start performances concerning the heating time and energy requirement. Therefore, a semi-empirical 

PEMFFC model coupled with an adaptive recursive least square (ARLS) is employed to keep track of the 

operating conditions and performance drifts in the first stage. Immediately afterwards, a procedure is 

proposed to conduct the cold start.  To the best of the authors’ knowledge, this is one of the first attempts, 
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if any, to perform the internal PEMFC cold start while taking into account operating conditions 

uncertainties. The final results of this work have been experimentally validated by means of a developed 

test bench. Section 2 gives an account of the overall process of the proposed cold start methodology along 

with the PEMFC modeling and implementation of the adaptive algorithm. In Section 3, experimental 

outcomes are reported and explored. Finally, the conclusion is drawn in section 4 with some remarks and 

suggestions for further studies concerning this problem. 

 

Fig. 1 Solution category chart for PEMFC cold start solutions and strategies (1 column) 

2. ADAPTIVE COLD START STRATEGY  

To enhance the PEMFC performance and avoid cold start failure, the produced heat from the fuel cell can 

be reused to warm up the PEMFC without external heating assistance. In order to minimize the heating 

time, it is crucial to maximize the generated heat by the exothermic reaction. It should be noted that 

drawing higher currents from the PEMFC leads to the generation of more heat. This is highly favorable 

for performing the cold start. However, an important limitation arises in this regard, which is the failure of 

PEMFC in providing high current loads at sub-zero temperature conditions, as discussed in [21]. Therefore, 

it is absolutely crucial to find the best current which can maximize the generation of residual heat while 

avoiding cold start failure.  

During PEMFC operation, reduction in oxygen and hydrogen concentration naturally causes a mass 

transportation voltage drop. In fact, the rate at which the current is being drawn from the PEMFC affects 

directly the oxygen and hydrogen concentration. The reduction in oxygen and hydrogen concentration 

leads to a drop in hydrogen and oxygen pressure. This drop causes a cell voltage drop commonly known 

as concentration loss. The point which needs to be highlighted is that the concentration loss becomes 

significant at higher current levels, when the hydrogen and oxygen are used at higher rates [39, 40]. In this 



5 
 

respect, it can be stated that PEMFC systems have a limiting current (the current corresponding to the 

maximum power) and going beyond this limit results in the increase of concentration loss as well as 

PEMFC degradation. Therefore, it is suggested to operate the PEMFC at its maximum power (Pmax) during 

the cold start. This mode of operation maximizes residual heat production and electrical power while 

avoiding concentration loss. Fig. 2 indicates the predicted polarization curve and its corresponded power 

curve to clarify the previously discussed points. As it can be seen in this figure, there is a clear connection 

between the maximum power point and occurrence of concentration loss. Moreover, the portion of thermal 

and electrical power as well as the heat generation related to the maximum power are shown.     

 

Fig. 2 (a) PEMFC polarization curve , (b) PEMFC power curve (1 column) 

The proposed cold start methodology of this paper depends on the maximum power mode, which is 

based on the power map knowledge of the PEMFC. The power map-based strategy assumes that maximum 

power operating point is fixed. However, in reality, this maximum power is reliant on the operating 

conditions variations and aging phenomena and is not easy to be tracked [41, 42]. Moreover, during 

PEMFC cold start, the formed ice leads to increased mass transport loss which in turn adds to the variation 

of the maximum power operating point [43]. In this study, an online model identification method coupled 

to an optimization algorithm is used to track the PEMFC maximum power point in real time [39, 44-51]. 

The proposed model identification method allows a real-time PEMFC model identification to plot the 

PEMFC power curve with updated parameters and the employed optimization algorithm is responsible to 

find the current corresponding to the maximum power from the updated model.  The identified current is 

finally applied to the real PEMFC system to perform the PEMFC cold start. The complete process is 

conducted online during the PEMFC cold start. Fig. 3 represents the explained process for the adaptive 

cold start of the PEMFC. Another aspect which plays a vital role in the functionality of the proposed 

adaptive strategy is to purge the PEMFC at shutdown and then seek the PEMFC maximum power at 
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startup. Purging the PEMFC just after the shutdown has several advantages, such as slowing down the ice 

formation in the cathode catalyst layer which allows the PEMFC to operate longer and generate more heat 

at cold start [16, 52, 53].  

 

Fig. 3 Identification and control process (1 column) 

2.1. Fuel cell modeling  

The choice of a suitable model for online parameter identification process is critical due to the fact that the 

number of parameters and required sensors, as measurement inputs of the model, has a significant role in 

the computational time and precision of the model.  The different employed PEMFC models presented in 

literature emulate the non-linear behavior of PEMFC and the dynamic evolution of these parameters during 

cold startup [54]. These dynamic models, which are known as mechanistic models, include different 

complex physical phenomena such as water transport, ice formation in the cathodic catalytic layer, 

electrochemical reactions, PEMFC heat exchanges, and so forth. PEMFC parameters of these models have 

been mostly identified at a given operating condition and are based on various assumptions [55, 56]. 

However, in real time application, the identified parameters are mainly influenced by the operating 

conditions, such as low temperature, and membrane humidity as well as PEMFC degradation [57]. The 

number of parameters of the PEMFC model is crucial in real time operation because many parameters 

would slow down the process and fewer parameter give a lack of precision for control. In this regard, a 

semi-empirical model, which is based on the physical relationships assisted by experimental data and 

represents the elemental electrochemical facets of FCs such as polarization curve, is chosen to describe the 

PEMFC behavior. This model benefits from a physical meaning and has a relative short computational 

time. It has been developed by Squadrito et al. [58] and is presented by an analytical expression, allowing 

to define the output voltage of the stack as a function of the current delivered by the stack. The cell potential 

(Vcell) is calculated by subtracting the activation (ξact), ohmic (ξohm), and concentration (ξconc) overvoltages 
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from the Nernst potential (Enernst). These physical meanings are very interesting to evaluate the relevance 

of the results. Squadrito's model is presented as follows: 

𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑛𝑒𝑠𝑛𝑠𝑡   −        𝜉𝑎𝑐𝑡         −    𝜉𝑜ℎ𝑚    −          𝜉𝑐𝑜𝑛𝑐 

𝑉𝑐𝑒𝑙𝑙 =       𝑉0      −   𝑏 log(𝑖𝑓𝑐)   −    𝑟 𝑖𝑓𝑐     +  𝛼(𝑖𝑓𝑐)𝑘 log (1 − 𝛽𝑖𝑓𝑐)                                            (1) 

 

Where V0 is the thermodynamic potential of the chemical reaction inside the PEMFC. It depends on the 

PEMFC temperature and the partial pressure of O2 and H2 [59].  The activation overvoltage, presented by 

 𝑏 log(𝑖𝑓𝑐), is the sum of the anode and cathode overvoltage [58]. The parameters 𝑖𝑓𝑐 and b are defined as 

the current density and an empirical constant dependent on PEMFC temperature, PEMFC degradation and 

membrane humidity respectively. The ohmic overvoltage, indicated by 𝑟 𝑖𝑓𝑐, is defined as the resistance 

of the proton and electron transfer inside the membrane and the electrodes. It depends mainly on the 

internal membrane resistance (r). The parameter r depends on membrane conductivity, thickness of the 

membrane and PEMFC temperature and its range can be approximated by the slope of the polarization 

curve in the ohmic region. The concentration overvoltage, formulated by − 𝛼(𝑖𝑓𝑐)𝑘 log (1 − 𝛽𝑖𝑓𝑐), arises 

when the PEMFC is in high current density. The variables 𝛼 and 𝑘 are respectively a parameter related to 

the diffusion mechanism (between 0.3 to 1.8) and a dimensionless number related to the water flooding 

phenomena (between 1 to 4) [58]. The parameter 𝛽 is the inverse of the limiting current density (A-1cm-2). 

It is crucial that Squadrito's model considers concentration overvoltage because it helps identifying the 

PEMFC maximum power point with an acceptable precision. Squadrito's model needs few sensors, only 

current and voltage measurements, and four parameters to be identified as V0, b, r and a.  

The utilized semi-empirical model describes the behavior of the fuel cell based on the prediction of 

polarization curve. In this respect, an investigation of the influence of each parameter on the output voltage 

of PEMFC, which consists of open circuit voltage (OCV), activation loss (AL), ohmic loss (OL), and 

concentration loss (CL), becomes feasible.  The voltage model is utilized for this analysis due to the fact 

that the estimation of power, which is the base of proposed cold start strategy in this paper, is premised 

upon the estimation of voltage. Hence conducting the analysis of variance (ANOVA) remains valid for the 

voltage model. To do so, the decomposition by ANOVA with the Sobol method is employed to quantify 

the influence of parameters on the PEMFC output voltage. The following formulations show how the 

introduced fuel cell model can be used to calculate the total variance of the PEMFC voltage (𝑉𝐶𝑒𝑙𝑙,𝑤,𝑥,𝑦,𝑧) 

and the variance of each introduced parameter (Var (V0), Var (b), Var (r), and Var (𝛼)).  
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𝑉𝐶𝑒𝑙𝑙,𝑤,𝑥,𝑦,𝑧 = 𝑉0𝑤
− 𝑏𝑥 log(𝑖𝑓𝑐) − 𝑟𝑦𝑖𝑓𝑐 + 𝛼𝑧𝑖𝑓𝑐

𝑘 log (1 − 𝛽𝑖𝑓𝑐)                                      (2) 

 𝑉𝑎𝑟 (𝑉𝑐𝑒𝑙𝑙,𝑤,𝑥,𝑦,𝑧) =
∑ ∑ ∑ ∑ (𝑉𝐶𝑒𝑙𝑙,𝑤,𝑥,𝑦,𝑧−𝑉𝐶𝑒𝑙𝑙,….)

2𝑁
𝑧=1

𝑁
𝑦=1

𝑁
𝑥=1

𝑁
𝑤=1

𝑁4                                             (3)   

𝑉𝑎𝑟 (𝑉0) =
∑ (𝑉𝐶𝑒𝑙𝑙,𝑤…−𝑉𝐶𝑒𝑙𝑙,….)

2𝑁
𝑤=1

𝑁
                                                                                    (4) 

𝑉𝑎𝑟 (𝑏) =
∑ (𝑉𝐶𝑒𝑙𝑙,.𝑥..−𝑉𝐶𝑒𝑙𝑙,….)

2𝑁
𝑥=1

𝑁
                                                                                       (5) 

𝑉𝑎𝑟 (𝑟) =
∑ (𝑉𝐶𝑒𝑙𝑙,..𝑦.−𝑉𝐶𝑒𝑙𝑙,….)

2𝑁
𝑦=1

𝑁
                                                                                           (6)  

𝑉𝑎𝑟 (𝛼) =
∑ (𝑉𝐶𝑒𝑙𝑙,...𝑧−𝑉𝐶𝑒𝑙𝑙,….)

2𝑁
𝑧=1

𝑁
                                                                                                (7) 

Fig. 4 represents the effect of each parameter on the voltage estimation. According to this figure, OCV and 

OL have the greatest impacts on the output voltage by almost 80% and 17% respectively. The CL has a 

minimal effect on the output of the PEMFC model and, from the statistical point of view, can be assumed 

as constant. However, constant assumption of the CL, which is related to the mass transport, makes the 

prediction of the real maximum power highly challenging. Fig. 5 shows the estimated maximum power of 

the fuel cell with and without consideration of the CL. As it is seen in this figure, the maximum power 

estimation without CL is not very precise. In this regard, all the parameters of the model need to be 

estimated online by ARLS to enhance the accuracy of the outcomes.  

 

 

Fig. 4  Influence of parameters on the PEMFC voltage estimation 
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Fig. 5 Estimated PEMFC power curves at 5°C with and without CL 

2.2. Online identification algorithm  

The PEMFC identification process is carried out in an online manner, where the experimental data, which 

are current, voltage, is used to update the PEMFC model parameters. In this context, recursive algorithms 

are suited to real-time applications since they can update the model as the experimental data comes in after 

each sample.  Among a large number of recursive identification algorithms, Recursive Least Squares (RLS) 

is one of the most popular techniques that brings about interesting results for real-time application [60]. 

However,  the classic RLS algorithm may lose its accuracy of estimation in case of tracking time-varying 

systems like PEMFCs [61]. In this paper, the estimator is required to track changes in a set of time-varying 

parameters. Hence a forgetting factor µ is considered to account for more recent measurements [62, 

63].There are many ways to update the forgetting factor. The most adapted one to the needs of this paper 

is the Directional Forgetting factor that forgets the information only in the directions in which new 

information is gathered. The chosen forgetting factor assures the convergence of the estimations and helps 

to track significant changes in the parameters [61]. In addition, Bierman decomposition is used for the 

covariance matrix in order to guarantee a positive semi-definite function and avoid numerical instability 

[64]. The ARLS algorithm can be formulated as follows. 

 

𝐽(𝑘) = ∑ 𝜕𝑘−𝑖𝑘
𝑖=0 𝑒𝑖

2                                                                                                         (8) 

 

ℎ(𝑘) = [ 𝑉0(𝑘), 𝑏(𝑘), 𝑟(𝑘), 𝛼(𝑘)]                                                                                                          (9) 
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x(𝑘)=[1, 𝑙𝑜𝑔(𝑖𝑃𝐸𝑀𝐹𝐶 ), 𝑖𝑃𝐸𝑀𝐹𝐶 , 𝑖𝑃𝐸𝑀𝐹𝐶
𝑘 𝑙𝑜𝑔 (1 − 𝛽𝑖𝑃𝐸𝑀𝐹𝐶 )]                                                               (10) 

 

𝐾(𝑘 + 1) =  
 𝑃(𝑘) 𝑥(𝑘+1)

1 + 𝑥(𝑘+1)𝑇 𝑃(𝑘) 𝑥(𝑘+1)
                                                                                                        (11) 

 

𝑃(𝑘 + 1) = 𝑃(𝑘 + 1) −
𝑃(𝑘)−𝐾(𝑘+1) 𝑥(𝑘+1)𝑇 𝑃(𝑘)

µ(𝑘)−1+𝑥(𝑘+1)𝑇 𝑃(𝑘) 𝑥(𝑘+1)
                                                        (12) 

 

µ(𝑘 + 1) = {
𝜕(𝑘 + 1) −

1−𝜕(𝑘+1)

𝑥(𝑘+1)𝑇 𝑃(𝑘) 𝑥(𝑘+1)
 ; 𝑠𝑖 𝑥(𝑘 + 1)𝑇 𝑃(𝑘) 𝑥(𝑘 + 1) > 0

                                    1                                  ;  𝑠𝑖 𝑥(𝑘 + 1)𝑇 𝑃(𝑘) 𝑥(𝑘 + 1) = 0
                 (13) 

 

𝑒(𝑘 + 1) =  𝑌(𝑘 + 1) −  𝑥(𝑘 + 1)𝑇 ℎ(𝑘)        (14) 

 

ℎ(𝑘 + 1) =  ℎ(𝑘) +  𝐾(𝑘 + 1) 𝑒(𝑘 + 1)        (15) 

 

Where J(k) is the objective function that should be minimized, K(k) denotes the gain matrix, P(k) is the 

covariance matrix of the estimated parameters, h(k) is the vector that contains the estimated parameters, 

x(k) is the data or regression vector, e(k) is the prediction error and µ(k) is the directional forgetting factor. 

Eq. (2-9) are solved recursively to define h(k). 

The ARLS algorithm is based on continuous updating of the model parameters h(k). Therefore, the initial 

parameters h(0) should be chosen close to the reality to avoid algorithm divergence. In this regard, a 

preprocessing of data is performed in this paper to avoid increasing the computational time or divergence 

and also get close to highly realistic results. The preprocessing of data is conducted by the Curve Fitting 

Toolbox™ of MATLAB software. This toolbox utilizes the least square methods to fit the data. Fitting 

requires a parametric model which can relate the real data to the predictor data. In this work, the employed 

fuel cell model is linear in coefficients. Therefore, linear least square, which minimizes the summed square 

of the difference between the observed response value and the fitted response value, is used to fit the model 

to experimental data. The utilized experimental data in the preprocessing stage comes from a conducted 

test at an initial temperature of -20°C to get the polarization curve of the fuel cell, which is a proper 

representative of its behavior. The recursive estimation of the PEMFC parameters by the ARLS method is 

tested in simulation and proven to be efficient in terms of computational time and precision. 
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3. EXPERIMENTAL RESULTS DISCUSSION 

3.1. Test bench 

The test bench used to test and validate the adaptive cold start strategy is presented in Fig. 6. The test bench 

is developed at the UQTR Hydrogen Research Institute (HRI), and it is composed mainly of an open-

cathode PEMFC with a nominal power of 500 W and an active area of 54 cm2. The PEMFC characteristics 

are presented in Table 1. The open-cathode PEMFC is self-humidified and air-cooled. The used fuel cell 

is called open-cathode PEMFC (or air-breathing PEMFC) because it includes 2 fans to supply the cathode 

with oxygen instead using compressed oxygen. Moreover, the fans are used to cool down the stack in case 

of overheating. The PEMFC fans speed controls the flow rate of air supplied to the cathode. The speed of 

the fans depends strongly on the power delivered by the PEMFC and the stack temperature. At low 

temperatures, a high fans speed increases the flow rate of cold air, which cools the PEMFC and influences 

its cold start capability. Therefore, several tests have been conducted to identify the minimum fans speed 

that provide enough oxygen to the PEMFC for all of these power ranges. The minimum operating fans 

speed supplies the PEMFC with a constant air flow of 17 l/s. In the anode side, the PEMFC is equipped 

with 2 valves. The anode inlet valve allows feeding the PEMFC with dry hydrogen. The hydrogen flow 

rate changes with the power output, and it is usually between 0 and 11.67 10-2 l/s. The anode outlet valve 

is used to purge the residual water during PEMFC operation. In addition, it was shown in literature that 

Nitrogen (N2) circulates through the polymer-electrolyte membrane from the cathode air to the anode side, 

adding to the hydrogen gas in the anode channels [65].The buildup of N2 in the recirculating anode gas 

reduces the PEMFC performance [66]. Consequently, a portion of the hydrogen gas has to be purged to 

prevent excessive buildup of N2 in the anode side. The anode side has to be purged recurrently in order to 

remove accumulated water and nitrogen. Therefore, the PEMFC is purged every 10 seconds for a purge 

duration of 10 ms in order to refill the anode volume with fresh hydrogen. The hydrogen exhaust  flow 

during the purge depends on the pressure difference between the environment (1 bar) and the anode side 

(1.5 bar as advised by the manufacturer) and the state of the purge valve. In addition, the pressure difference 

between the anode and the cathode must not exceed 0.5 bar to avoid damaging the membrane. The control 

of the purge valve, fan speed, hydrogen valve and the acquisition of data (temperature, current, voltage, 

hydrogen flow) are performed through an embedded computer NI CompactRIO 9022. A programmable 

load manufactured by BK Precision with a maximum power of 1200 W is connected to the PEMFC in 

order to emulate the behavior of an automobile traction chain. The PEMFC being tested is placed inside 
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an environmental chamber, which is used to set the start-up temperatures. It should be noted that the ARLS 

algorithm is developed in MATLAB and introduced in LabVIEW program via MathScript RT Module. In 

the first stage, the ARLS algorithm receives the PEMFC current and voltage data from the real PEMFC 

via Ethernet communication every 100 ms. In the second stage, the ARLS algorithm estimates the 

parameters, V0, b, r and 𝛼. In the third stage, the estimated parameters are used to plot the power versus 

current curve and the current corresponded to the maximum power is identified and sent to the load via 

USB communication. The process is performed in real-time. It should be reminded that the employed 

PEMFC in the test bench cannot supply 500 W, as opposed to the mentioned rated power in the 

characteristics. It is due to the fact that this PEMFC has been used for some years and its maximum power 

has decreased due to degradation. However, it can supply enough power for the purpose of this work.  

 

 

Fig. 6 Experimental test bench (1 column) 
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Table 1 PEMFC characteristics 

 

PEMFC Technical specification 

Type of FC 

Rated Power 

PEM 

500 W 

Number of cells 36 

Active area 

Heat transfer surface  

Thermal capacity  

Membrane thickness 

Weight (with fan and casing)  

Size 

Humidification 

54 cm2 

0.14 m2 

690 J·kg-1·K-1  

5 10-5 m 

12 Kg 

130 x 220 x 122 mm  

Self-humidified 

Rated performance 22 V at 23.5 A 

Max Current 35 A 

Hydrogen pressure 

Cathode pressure 

0.5-0.6 Bar  (50-60 kPa) 

1 Bar 

Rated H2 consumption 7 L/min 

Ambient temperature 5 to 30°C 

Max stack temperature 

System efficiency 

65°C 

40% at 14 V 

Cooling 

Reactant 

Hydrogen purity 

Air (integrated cooling fan) 

Hydrogen and Air 

99.999% dry H2 

 

3.2. Procedure 

The experimental procedure for adaptive cold start strategy consists of three major steps: purging, cooling 

down, and startup. The purge duration (10 s) and cooling time (4 h) have been justified to ensure consistent 

cell conditions before the cold start. 

 

1. The purge procedure is premised upon activating the purge valve for 10 seconds to evacuate the 

residual water after PEMFC shutdown. This purge procedure is effective in reducing liquid 

water and in improving the cold start performance.  

 

2. Upon completing the purging step, the temperature inside the environmental chamber is set to 

the desired start-up temperatures to cool down the PEMFC for 4 h. 

 

3. Once the cooling down step is completed, the control process is launched to warm up the 

PEMFC. The control process can be broken down into three steps. Firstly, the parameters of the 

PEMFC model are updated using ARLS algorithm to predict the PEMFC polarization curve and 

power curve during cold start. Secondly, the optimal operating current is obtained from the 

model. Lastly, the optimal current is applied to the real PEMFC system. The complete process 
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is executed on-line until PEMFC temperature reaches the melting point of ice. The flowchart of 

the adaptive cold start strategy is represented in Fig. 7.  

 

Fig. 7 Flowchart of Adaptive Cold Start Strategy (1 column) 

The PEMFC parameters such as hydrogen pressure, fan speed and purge time are chosen after a 

parametric study which allowed to identify the best starting conditions for PEMFC at low temperatures. 

3.3. Experimental results  

The achieved results from the conducted tests on the developed adaptive cold start strategy are explored 

in this section. The first part of the analysis is related to the customization and validation of the utilized 

adaptive filter algorithm and suggested cold start strategy. In this part, the accuracy of voltage estimation 

as well as the evolution of the parameters and some other experimental characteristics of the PEMFC are 

represented. Moreover, the performance of the proposed adaptive cold start strategy is evaluated. The 

second part of the analysis deals with performing a comparative study. In this section, the outcomes of 

the proposed adaptive cold start strategy are compared with the results of the two most commonly 

investigated cold start strategies, namely Potentiostatic and Galvanostatic, in the literature.  
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3.3.1. Customization and validation   

Since the proposed cold start strategy is based on power estimation, it must be ensured that ARLS 

algorithm is able to estimate PEMFC voltage close to the measured voltage. It should be noted that power 

is calculated by means of estimated voltage. In this respect, a random current profile is imposed to the 

PEMFC as shown in Fig. 8a. The measured and estimated voltage are compared in Fig. 8b. The percentage 

of estimation error, which is shown in Fig. 8c, confirms the adequate accuracy of ARLS algorithm in 

estimating the output voltage of the PEMFC.  

 

Fig. 8 Experimental validation of RLS (1 column) 

Fig. 9 represents the conducted test to evaluate the performance of the suggested adaptive methodology 

for the PEMFC cold start. It should be noted that prior to performing this test, the same procedure as 

explained in section 3.2 has been followed. This test has been carried out with the initial temperature of 

-20°C. According to Fig. 9, the temperature has reached the melting point, 0°C, at almost 50 seconds 

with an energy consumption of 201.87 J cm-2. Looking more closely at Fig. 9, it can be observed that 

PEMFC optimum current increases during the first few seconds, almost five seconds, followed by a rapid 

drop, and then it remains almost stable. It is due to the fact that current density directly reflects the water 

and heat production rates which change significantly during the cold start process [16]. It should be noted 

that the current density is high and the membrane is dry with more water absorption in the beginning. 

Dry membrane decreases PEMFC performance, which is reflected from the rapid drop of PEMFC voltage 

in the beginning. Due to the deterioration of PEMFC performances, the algorithm decreases PEMFC 

current to follow PEMFC parameters variations. After the occurrence of the current drop at almost fifth 

second, the algorithm increases the current again. This increase is caused by the membrane hydration 

and temperature enhancement, which lowers the ohmic resistance and enhances the kinetics reaction. At 
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the moment of ice melting (t=52 s), an increase in current density can also be observed, mainly due to 

the sudden change of ice and liquid volume fractions. Afterwards, the current density and cell voltage 

become relatively stable. For the adaptive cold start mode, the PEMFC performance improvement is 

caused by the membrane hydration and temperature increment.  

 

Fig. 9 Evolution of cell voltage, current density, PEMFC temperature and PEMFC power  
during adaptive cold start (1 column) 

 

Fig. 10 shows the variation of the parameters during the conducted adaptive cold start test. It can be 

stated that the employed ARLS algorithm is perfectly capable of tracing the time-varying parameters of 

the PEMFC. Indeed, these variations indicate that the selected semi-empirical model and the integrated 

adaptive filter are successfully dealing with the performance drifts of the PEMFC during the cold start.     

 

           Fig. 10 Variation of estimated parameters during adaptive cold start (1 column) 
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One important point that needs to be investigated is the influence of temperature variation in the 

estimation of maximum power. In fact, a variation of temperature exerts a significant influence on the 

maximum deliverable power of the fuel cell, and hence it is highly important to have an accurate 

prediction of the fuel cell behavior while the operating temperature change. In this regard, two sets of 

parameters, which have been obtained by the parameter estimation method in two different operating 

temperatures, have been utilized to plot the polarization curves and maximum power curves of the fuel 

cell, as shown in Fig. 11. The first considered data is related to the temperature of -15°C at 21 seconds 

and the second one is for the temperature of 5°C at 63 seconds. These two sets of data have been collected 

to plot power and polarization curves. As expected from literature, an increase is seen in the amount of 

power when the temperature rises. It can be seen that the required current density for achieving the 

maximum power increases from 0.32 A cm-2 at -15℃, to reach 249 W, to 0.37 A cm-2 at 5℃, to attain 

363 W. It can be inferred from the discussed result that the obtained parameters successfully provide the 

maximum power and characteristic curves which vary depending on the operating temperature. 

 

Fig. 11 Experimental and estimated PEMFC characteristic curves at -15°C and 5°C (1 column) 

 

Table 2 provides information on the values of the two sets of the collected data for evaluating the 

maximum power estimation at various temperatures. This table presents a good opportunity to analyze 

the evolution of membrane resistance (r) value. Actually, since the increase of the temperature favors the 

hydration of the membrane, it is observed that the resistance of the membrane decreases from 0.3 Ω to 



18 
 

0.23 Ω due to the temperature increase from -15°C to 5°C. The range of membrane resistance parameter 

is validated by the value of the slope of experimental polarization curve in the ohmic region. 

Table 2 Two sets of fitting parameters collected at -15°C (t=21 s) and 5°C (t=63 s) 

 V0 b r a 

-15°C 0.773 0.027 0.3 10.32 

5°C 0.775 0.022 0.23 7.32 

 

Table 3 gives an account of the heating time and energy requirements for the adaptive cold start strategy 

from different initial temperatures. It indicates that a higher startup temperature decreases heating time 

and energy requirement. The heating time changes almost linearly with the startup temperature. The 

proposed cold start strategy can adapt to the variation of the operating conditions (Initial temperature, 

membrane humidity…) and the degradation of the PEMFC. 

Table 3 Effect of initial temperature on cold start performances 

Temperatures Heating time Energy requirement 

- 6.7°C 20.2 s 71.23 J cm-2 

-10.4°C 29.4 s 112.98 J cm-2 

-13.5°C 36.9 s 133.94 J cm-2 

-20°C 54 s 201.87 J cm-2 

 

In the light of the investigated results, several advantages can be mentioned regarding the proposed 

adaptive cold start strategy. First of all, it is strikingly economical in terms of energy consumption. 

Moreover, it can satisfy the international PEMFC vehicle requirements which demand 50% of the 

PEMFC maximum power in less than 30 seconds for a cold start from -20°C [67]. This proposed adaptive 

cold start strategy is also independent of complex PEMFC modeling and provides a cold start solution 

adaptable to the state of the PEMFC. Another worth mentioning aspect of this strategy is maximizing 

heat flux and electrical power provided by the PEMFC while avoiding the PEMFC operation at low 

voltage regions. From an industrial point of view, it can be stated that the suggested adaptive cold start 

method is simple to implement in a real PEMFC system and requires minimal user intervention, which 

minimizes manipulation and parameterization errors.  
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3.3.2. Comparative study 

Literature consideration shows that most of the existed cold start strategies are based on the well-known 

constant voltage (Potentiostatic) and constant current (Galvanostatic) modes. Contrary to the proposed 

adaptive strategy, Potentiostatic and Galvanostatic modes work with fixed cold start parameters (current 

or voltage) to promote heat generation during PEMFC cold start. To put the finishing touches on the 

performance evaluation of the suggested adaptive cold start strategy of this work, a comparative study 

has been carried out to illustrate the distinguishing features of the three mentioned strategies.  The 

experimental procedure for Potentiostatic and Galvanostatic startups consist of three major steps. Purging 

and cooling down, which are similar to adaptive strategy procedure, and then demanding a constant 

current or voltage form the PEMFC. It is evident that solely the startup stage is different from adaptive 

strategy procedure. The Potentiostatic voltage value and Galvanostatic current value have been selected 

after performing several tests to ensure a good cold start performance. Current density is set to 222 mA 

cm-2 for Galvanostatic mode, and cell voltage is set to 0.38 V for Potentiostatic mode. It should be noted 

that current density can be at high levels during Galvanostatic start-up. However, when the current 

density is at its maximum, the output voltage drops to 0 which is not a practical operating voltage. For 

Potentiostatic start-up, a reasonably low but practical voltage of 0.38 V is used to ensure high current 

densities. Fig. 12 shows the results of the conducted tests based on the provided information about 

voltage and current levels for Galvanostatic and Potentiostatic startups. Fig. 12 demonstrates the 

evolution of voltage in Galvanostatic mode, which is related to the demand of 222 mA from the PEMFC, 

and current in Potentiostatic mode, which comes from the desired voltage level (0.38 V) in the PEMFC. 

Looking more closely at Fig. 12, it is observed that the current density depends strongly on the hydration 

of the membrane during Potentiostatic startup. In the beginning, the current density is low because the 

membrane is initially dry. Afterwards, due to the produced water in the first stage, the membrane is 

gradually hydrated, and its protonic resistance is decreased. This phenomenon favors the increase of the 

current and consequently the heat flux and the temperature increase considerably. However, the current 

density is independent of the hydration of the membrane during Galvanostatic mode since it is constant 

during cold start. Eq. (16) can explain the evolution of PEMFC temperature during Galvanostatic startup 

which increases slowly as a result of declined heat flux caused by cell voltage increase. 

 

𝑄𝑡ℎ = (
𝛥𝐻

2𝐹
− 𝑉𝑃𝐸𝑀𝐹𝐶)  𝐼𝑃𝐸𝑀𝐹𝐶     (16) 
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Fig. 13 represents the corresponded temperature evolutions of each cold start technique. According to 

this figure, the melting point has been reached at 102 and 220 seconds in Potentiostatic and Galvanostatic 

modes respectively.  

 
Fig. 12 Evolution of cell voltage and current density during  

Galvanostatic and Potentiostatic start-up (1 column) 

 

 
Fig. 13 Evolution of cell temperature during Galvanostatic,  Potentiostatic  

and Adaptive cold start (1 column) 

 

Form the conducted test, it can be concluded that low current density in Galvanostatic startup prolongs 

the heating time of the PEMFC, which makes this solution less interesting for the cold start of PEMFC 

in a vehicular application. On the other hand, Potentiostatic startup provides a higher level of heat than 

Galvanostatic due to its high current density. However, the performance of Potentiostatic technique 

mainly depends on constant cell voltage, which affects greatly the evolution of current density and cell 
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temperature. The value of this voltage depends on the parameters of the PEMFC and requires several 

tests to be identified.  

Contrary to Potentiostatic and Galvanostatic techniques, the proposed adaptive cold start strategy copes 

with fuel cell parameters variations during cold start and keeps the current density at high levels, leading 

to PEMFC performance improvement caused by membrane hydration and temperature increment. This 

cold start strategy based on maximum power mode not only provides the PEMFC maximum power but 

also produces high reaction heat during cold start-up. Fig. 14 shows the comparison of the heating time 

and energy requirements of the different cold start strategies. It can be seen that heating time of 

Galvanostatic and Potentiostatic modes is much longer than the proposed adaptive cold start strategy. 

Moreover, energy consumption of adaptive cold start strategy is about 201.87 J cm-2 compared to 481.56 

J cm-2 and 873.36 J cm-2 of the Potentiostatic and Galvanostatic approaches respectively. According to 

the comparison of the three cold start strategies, it can be concluded that adaptive cold start strategy is 

more advantageous than Potentiostatic and Galvanostatic strategy in terms of heating time, energy 

requirements. It is also evident that this adaptive strategy does not have the problem of adaptability and 

repeatability compared to its competitors.  

 

 

 

 

 

 

 

 

 

 

4. CONCLUSION 

In this paper, a new approach for PEMFC cold start has been proposed premised on online parameter 

identification. In this respect, a semi-empirical model is selected to predict the behavior of the PEMFC 

by means ARLS algorithm. To the best of authors’ knowledge, this is the first proposed adaptive strategy 

for internal heating of a PEMFC during the cold start. The adaptive algorithm updates the model 

parameters in order to trace the performance drifts of the PEMFC due to degradation and operating 

Adaptive cold
start

Potentiostatic
cold start

Galvanostatic
cold start

54
102

220201,87

481,56

873,36Heating time (s)

Required energy (J cm-2)

Fig. 14 Performance comparison of different cold start 
strategies (1 column) 



22 
 

conditions variation, and the model provides the characteristic curves of the PEMFC, such as polarization 

and power curves, in real-time. The maximum power point is determined with the help of an optimization 

algorithm from the power curve, and its corresponding power is demanded from the PEMFC during the 

cold start. It should be noted that the process of the cold start is performed based on purging the PEMFC 

at shutdown and heating it up at startup. The whole explained process of assigning the corresponding 

current to the maximum power is done during the startup stage at low temperature. The proposed adaptive 

strategy has been implemented in a developed test bench, and its performance has been compared to two 

renowned cold start techniques, namely Potentiostatic and Galvanostatic, in terms of heating time and 

energy consumption. The achieved experimental results confirm the improvement of over 50% regarding 

the defined comparison criteria. In addition, the existed startup techniques are based on a pre-calculated 

set of rules known in advance. However, the adaptive strategy constantly modifies these rules online 

according to measurements carried out on the real PEMFC. The implementation of the proposed adaptive 

cold start strategy is very convenient in a real PEMFC in vehicular application since it requires minimal 

user intervention. 

The outcomes of this paper put forward the following directions for future studies: 

 Integration of a thermal model into the employed voltage model of PEMFC to increase the 

precision of characteristics prediction. 

 The application of the proposed strategy in other fuel cells, different technologies and power 

ranges, and the impact of the strategy on the PEMFC lifetime. 
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