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ABSTRACT 

Proton exchange membrane fuel cell (PEMFC) models are multivariate with different nonlinear elements 

which should be identified accurately to assure dependable modeling. Metaheuristic algorithms are perfect 

candidates for this purpose since they do an informed search for finding the parameters. This paper utilizes 

three algorithms, namely shuffled frog-leaping algorithm (SFLA), firefly optimization algorithm (FOA), 

and imperialist competitive algorithm (ICA) for the PEMFC model calibration. In this regard, firstly, the 

algorithms are employed to find the parameters of a benchmark PEMFC model by minimizing the sum of 

squared errors (SSE) between the measured and estimated voltage for two available case studies in the 

literature. After conducting 100 independent runs, the algorithms are compared in terms of the best and the 

worst SSEs, the variance, and standard deviation. This comparison indicates that SFLA marginally 

outperforms ICA and FOA regarding the best SSE in both cases while it performs 20% and twofold better 

than other algorithms concerning the worst SSE. Furthermore, the obtained variance and standard deviation 

by SFLA are much less than the other algorithms showing the precision and repeatability of this method. 

Finally, SFLA is used to calibrate the model for a new case study (Horizon 500-W PEMFC) with variable 

temperature.  

Keywords: metaheuristic algorithms, shuffled frog-leaping algorithm, PEMFC, semi-empirical modeling      

1 Introduction 

Exhaustion of fossil fuels, owing to the growth of energy consumption, and the gained public insights into 

environmental protection have turned the attentions of both individual and governmental sectors to 

alternative sources of energy [1]. As a result, many researchers have been engrossed by greener energy 

sources such as wind, solar, waves, and so forth [2]. The major problems with the stated sources are their 

unforeseeable nature and reliance on climate conditions. These pitfalls, on the other hand, have marked the 

paramount need of energy storage. Hydrogen, which is the trending topic nowadays, can operate as an 

energy storage medium to efficiently store renewable energy until an energy conversion device turns it into 
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electricity [3]. Fuel cell (FC) is one of the most significant conversion devices, which usually produces 

electricity through a chemical reaction between hydrogen and oxygen. Among different kinds of FCs, 

proton exchange membrane FC (PEMFC) has been used in a number of areas such as automotive, on-site 

generation, and portable electronic devices because of its low operating temperature, high power density, 

and solid electrolyte [4, 5]. 

One of the key issues in the technical maturity of PEMFCs is their mathematical modeling. Modeling can 

disclose more details about the operation of this device resulting in a better appreciation of the performance 

enhancement [6, 7]. One of the most important challenges through the process of modeling a PEMFC is the 

precise estimation of its characteristics [8]. This difficulty is mainly owing to the fact that PEMFC is a 

multiphysics system and its parameters are strictly related to the operating conditions [9-11]. Although 

there are many approaches for the PEMFC modeling, such as mechanistic and black-box [12], mathematical 

modeling based on semi-empirical equations have been given a lot of attentions due to their capabilities to 

mimic the behavior of this device in variant operating conditions [13]. Unlike the mechanistic models, 

which offer deep apprehension of the underlying phenomena, and black box models, which provides 

shallow insight into heat and mass phenomena, semi-empirical models attempt to illuminate the 

electrochemical behavior of a FC by imitating the polarization curve [14]. So far, several semi-empirical 

models have been proposed to predict the polarization curve [15, 16]. Among them, the model introduced 

by Amphlett et al. [17], which is a semi-empirical model supported by a mechanistic background, has been 

used in many studies and its parameters estimation has become a benchmark problem in this field [18]. A 

number of similar suggested models in the literature can result in a satisfactory prediction for a particular 

FC system. However, few of them have had this wide application. The topical issue related to this model 

and modeling approach is the inaccessibility of the exact parameters. Hence, the proper calibration of model 

parameters has a vital role in achieving accurate output. Several methods, such as artificial neural networks, 

adaptive filters, and experimental electrochemical approaches, have been used for modeling and parameter 

extraction of PEMFCs as described completely in [19]. Among them, metaheuristic optimization algorithms 
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have been the focus of many studies for offline identification due to their robustness, flexibility, and parallel 

computing for extracting the linear and nonlinear parameters of a PEMFC model [20-22]. These methods 

are utilized as an alternative to conventional derivative-based techniques. They are quite appropriate for 

global searches due to their potential at exploration and discovering promising domains in the defined 

search space at a particular time. The majority of the metaheuristic optimization techniques are nature-

inspired. Although they offer near optimal rather than optimal solutions, they do not need the cost function 

derivatives and/or constraints and employ deterministic rules to solve nonlinear and nonconvex problems 

[23]. Another worth noting applicability of parameter extraction by metaheuristic algorithms is that the 

obtained set of parameters by these algorithms can be used as initial values for online adaptive filter based 

parameter identification to enhance the performance [19, 24]. This stems from the fact that the performance 

of adaptive filters is very sensitive to the initialization stage, and they do not have the same exploration 

capability as metaheuristic algorithms to find the suitable parameters [25]. A comprehensive review of the 

utilized optimization algorithms in the parameter estimation of semi-empirical PEMFC models can be 

found in [26]. Table 1 lists some of these algorithms in recent years along with the utilized PEMFC case 

studies.   

Table 1: The studied metaheuristic algorithms for PEMFC parameters extraction 

Optimization Algorithm Case study Year Reference 
Eagle strategy A PEMFC stack [27] 2019 [28] 

Cuckoo search algorithm with explosion operator 
(CS-EO) 

A PEMFC stack [27] 
SR-12 500 W 

Ballard Mark V (1 cell) 
BCS 500 W 

2019 [29] 

Slap swarm optimizer (SSO) NedStack PS6 
BCS 500 W 2018 [30] 

Grasshopper optimization (GHO)  2018 [31] 

Grey wolf optimizer (GWO) 

250-W PEMFC 
Ballard V 5 kW 
SR-12 500 W 
BCS 500 W 

Temasek 1 kW 

2017 [32] 

Aging and challenging P systems based optimization 
algorithm (AC-POA) 250-W PEMFC 2016 [33] 

Hybrid teaching learning based optimization – 
differential evolution (TLBO–DE) 250-W PEMFC 2016 [34] 
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Generalized reduced gradient (GRG) A single cell 2016 [35] 
Hybrid adaptive differential evolution algorithm 

(HADE) 250-W PEMFC 2015 [36] 

Evolutionary strategy 1.2-kW Nexa 2015 [37] 
Genetic algorithm (GA) 250-W PEMFC 2015 [38, 39] 

Transferred adaptive differential evolution (TRADE) 

Ballard V 5 kW 
SR-12 500 W 
BCS 500 W 

Temasek 1 kW 
WNS-FC 

2015 [40] 

Simplified teaching-learning based optimization 
algorithm (STLBO) 250-W PEMFC 2014 [41] 

Multi-strategy adaptive differential evolution (rank- 
Made) 

Ballard V 5 kW 
SR-12 500 W 
BCS 500 W 

Temasek 1 kW 
WNS-FC 

2014 [42] 

Adaptive differential evolution algorithm (ADE) 

Ballard V 5 kW 
SR-12 500 W 
BCS 500 W 

 

2014 [43] 

         

The literature study evidently demonstrates the application and significance of metaheuristic algorithms in 

the PEMFC parameter estimation problem. So far, no optimization algorithm has been proved to be the 

most proper and accordingly there is always this necessity to evaluate the performance of any newly 

developed optimization methods for exploring the optimal solution of a specific problem under attention. 

This paper aims at investigating the performance of three metaheuristic algorithms, namely shuffled frog-

leaping algorithm (SFLA), firefly optimization algorithm (FOA), and imperialist competitive algorithm 

(ICA), in the parameters estimation benchmark of the PEMFC model proposed by Amphlett et al. These 

algorithms have been used in several engineering problems. However, to the best of the authors’ knowledge, 

this is the first attempt to identify the parameters of a FC system by means of the mentioned algorithms. 

Herein, the stated algorithms are exploited to estimate the Amphlett’s model parameters for the 

experimental data of NedStack PS6 (6 kW), and BCS 500-W PEM generator, which are available in the 

literature, and Horizon 500-W open cathode PEMFC, which is accessible on a developed test bench for this 

work. The performance of the algorithms has been compared with one another for a defined fitness function 
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over 100 independent runs to investigate the accuracy and probability of repeating the satisfying solution. 

It should be noted that the introduced algorithms performance has been also compared with very recent 

used optimizers in PEMFC modeling, such as SSO, GHO, and GWO, for the common case studies.       

The remainder of this paper is structured as follows. A general description of the benchmark PEFMC 

modeling problem is provided in section 2. The explanation of algorithms is presented in section 3. Section 

4 deals with the investigation of the obtained results regarding the comparison of the algorithms and the 

PEMFC case studies. Finally, the conclusion is given in section 5.               

2 Mathematical PEMFC stack modeling  

The steady-state behavior of the PEMFC has been modeled by means of an electrochemical model proposed 

by Amphlett et al. in [17, 44]. In this model, the output voltage of the PEMFC (𝑉𝐹𝐶) is considered as the 

sum of cell reversible voltage (𝐸𝑁𝑒𝑟𝑛𝑠𝑡) and three voltage losses, namely activation (𝑉𝐴𝑐𝑡), ohmic (𝑉𝑂ℎ𝑚𝑖𝑐), 

and concentration (𝑉𝐶𝑜𝑛). This model is for a number of cells (𝑁𝑐𝑒𝑙𝑙) connected in series and considers the 

same behavior for all the cells. The general formulation of the utilized electrochemical model is as follows:  

𝑉𝐹𝐶 = 𝑁𝑐𝑒𝑙𝑙(𝐸𝑁𝑒𝑟𝑛𝑠𝑡 − 𝑉𝐴𝑐𝑡 − 𝑉𝑂ℎ𝑚𝑖𝑐 − 𝑉𝐶𝑜𝑛)                                                                                     (1) 

Where the Nernst equation, which calculates the thermodynamic potential, is formulated based on [28, 44]: 

𝐸𝑁𝑒𝑟𝑛𝑠𝑡 = 1.229 − 0.85 × 10
−3(𝑇𝑠𝑡𝑎𝑐𝑘 − 298.15) + 4.3085 × 10

−5𝑇𝑠𝑡𝑎𝑐𝑘[ln(𝑃𝐻2) + 0.5ln⁡(𝑃𝑂2)] (2) 

Where 𝑇𝑠𝑡𝑎𝑐𝑘 is the stack temperature (K), 𝑃𝐻2 is the hydrogen partial pressure in anode side (atm), and 

𝑃𝑂2 is the oxygen partial pressure in cathode side (atm).  

The reactant partial pressures in the inlet flow channels will vary with the humidification level of the inlet 

streams, and the consumption rates of oxygen and hydrogen [17, 44]. Under such basis, if the utilized 

reactants are air and Hydrogen, which is the case in this work and the majority of the utilized PEMFC 

systems, 𝑃𝑂2 can be calculated as [27-29, 33, 34, 38]: 
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𝑃𝑂2 = 𝑃𝐶 − (𝑅𝐻𝐶 ⁡𝑃𝐻2𝑂
𝑠𝑎𝑡 ) −

0.79

0.21
𝑃𝑂2⁡𝑒𝑥𝑝 (

0.291(𝐼𝐹𝐶 𝐴⁄ )

𝑇𝑠𝑡𝑎𝑐𝑘
0.832 )   (air and H2)                                                     (3) 

If the reactants are Oxygen and Hydrogen, then 𝑃𝑂2 is obtained as [27-29, 33, 34, 38]: 

𝑃𝑂2 = 𝑅𝐻𝐶 ⁡𝑃𝐻2𝑂
𝑠𝑎𝑡 [(𝑒𝑥𝑝 (

4.192(𝐼𝐹𝐶 𝐴⁄ )

𝑇𝑠𝑡𝑎𝑐𝑘
1.334 ) ×

𝑅𝐻𝐶⁡𝑃𝐻2𝑂
𝑠𝑎𝑡

𝑃𝐶
)
−1

− 1]   (O2 and H2)                                               (4) 

In both cases, the 𝑃𝐻2 is given by [27-29, 33, 34, 38]: 

𝑃𝐻2 = 0.5⁡𝑅𝐻𝑎⁡𝑃𝐻2𝑂
𝑠𝑎𝑡 [(𝑒𝑥𝑝 (

1.635(𝐼𝐹𝐶 𝐴⁄ )

𝑇𝑠𝑡𝑎𝑐𝑘
1.334 ) ×

𝑅𝐻𝐶⁡𝑃𝐻2𝑂
𝑠𝑎𝑡

𝑃𝑎
)
−1

− 1]                                                               (5) 

Where 𝑅𝐻𝐶 and 𝑅𝐻𝑎 are relative humidity of vapor in electrodes, 𝑃𝐶 and 𝑃𝑎 are the cathode and anode inlet 

partial pressures (atm), 𝐼𝐹𝐶 is the PEMFC operating current (A), 𝐴 is the active area of the membrane (cm2), 

and 𝑃𝐻2𝑂
𝑠𝑎𝑡  is the saturation water pressure (atm). The saturation vapor pressure at the FC operating 

temperature can be defined as [27, 45]: 

𝑙𝑜𝑔10(𝑃𝐻2𝑂
𝑠𝑎𝑡 ) = 2.95 × 10−2(𝑇𝑠𝑡𝑎𝑐𝑘 − 273.15) − 9.18 × 10

−5(𝑇𝑠𝑡𝑎𝑐𝑘 − 273.15)
2 + 1.44 ×

10−7(𝑇𝑠𝑡𝑎𝑐𝑘 − 273.15)
3 − 2.18                                                                                                             (6) 

The activation loss is the overpotential required to activate the electrodes. This loss is dominant in low 

current density region and is calculated by: 

{
𝑉𝐴𝑐𝑡 = −[𝜉1 + 𝜉2⁡𝑇𝑠𝑡𝑎𝑐𝑘 + 𝜉3⁡𝑇𝑠𝑡𝑎𝑐𝑘 ln(𝐶𝑜2) + 𝜉4⁡𝑇𝑠𝑡𝑎𝑐𝑘 ⁡ln(𝐼𝐹𝐶)]

𝐶𝑜2 =⁡
𝑃𝑜2

5.08×106⁡exp(−498 𝑇𝑠𝑡𝑎𝑐𝑘
⁄ )⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                                                      (7) 

Where 𝐶𝑜2 is the oxygen concentration (mol⁡cm−3), and 𝜉𝑘(k = 1…4) are the semi-empirical coefficients 

based on theoretical equations with kinetic, thermodynamic, and electrochemical foundations [17]. These 

parameters have been already defined in the literature [17, 44, 46] by solving the Butler-Volmer equation, 

which is a thermodynamics relation based on transfer coefficient, exchange current density, universal gas 

constant, Faraday constant, and number of electrons transferred due to reaction, etc., for both of anode and 

cathode reaction sides. The ohmic voltage drop, which is the consequence of resistance to the electrons 
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transfer through the collecting plates and carbon electrodes and the resistance to the protons transfer through 

the solid membrane, is calculated by a general expression based on the equivalent resistance of the 

membrane [44]:  

{
 
 

 
 
𝑉𝑂ℎ𝑚𝑖𝑐 = 𝐼𝐹𝐶(𝑅𝑚 + 𝑅𝐶)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑅𝑚 = 𝜌𝑚⁡𝑙 𝐴⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁄

𝜌𝑚 =
181.6[1+0.03(𝐽)+0.062(

𝑇𝑠𝑡𝑎𝑐𝑘
303⁄ )

2
(𝐽)2.5]

[𝜆−0.643−3(𝐽)]exp⁡(4.18(
𝑇𝑠𝑡𝑎𝑐𝑘−303

𝑇𝑠𝑡𝑎𝑐𝑘
))

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                                              (8) 

Where 𝑅𝑚 is the membrane resistance (Ω), 𝑅𝐶 is the equivalent contact resistance to electron conduction 

(Ω), 𝜌𝑚 is the resistivity of the membrane (Ω.cm), 𝑙 is the membrane thickness, 𝐽 is the actual current density 

(A cm−2), and 𝜆 is an adjustable parameter related to the water content of the membrane. 𝑅𝐶 is usually 

considered as constant. However, 𝜆 is an adaptable parameter related to the membrane and its preparation 

process. It is a function of relative humidity and stoichiometry relation of the anode gas. As reported in [28, 

36, 38, 40, 41, 47],  its value ranges from 10 to 23 where lower values signify high relative humidity ratio 

and higher values indicates oversaturated conditions.  

The concentration voltage drop is indeed due to the mass transport which influences the concentrations of 

hydrogen and oxygen and, as a result, reduces the partial pressure of these gases. Oxygen and hydrogen 

pressures drop relies on the electrical current and the physical characteristics of the system. To determine 

an equation for this drop, a maximum current density is defined based on which the current density cannot 

surpass this limit since the fuel cannot be provided at a higher rate. 𝑉𝐶𝑜𝑛 is determined by: 

𝑉𝐶𝑜𝑛 = −𝛽 ln (
𝐽𝑚𝑎𝑥 − 𝐽

𝐽𝑚𝑎𝑥
⁄ )                                                                                                              (9) 

Where 𝛽 is a parametric coefficient (V) that depends on the cell and its operation state [48], and 𝐽𝑚𝑎𝑥 is the 

maximum current density.  The parameters which need to be extracted in the discussed steady-state model 

are listed in Table 2. This table also clarifies the maximum and minimum range of each parameter. 
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Table2: Range of targeted parameters for estimation 

Model Parameters Minimum Maximum Reference 

Semi-empirical  

𝜉1 -1.1997 -0.8532 

[28-30, 32, 34, 36, 38, 40, 41] 

𝜉2 × 10
−3 1 5 

𝜉3 × 10
−5 3.6 9.8 

𝜉4 × 10
−5 -26 -9.54 

𝑅𝐶 (Ω)⁡× 10−4 1 8 
𝜆 10 23 

𝛽 (V) 0.0136 0.5 
 

3 Metaheuristic optimization algorithms  

Constrained optimization is a vital part of most of the engineering and industrial problems [49]. In this type 

of problem, the mathematical optimization is defined by different kinds of constraints which modify the 

form of the search space. The metaheuristic optimization techniques are usually used to find global or near-

global answers in such problems. In this work, SFLA, ICA, and FOA algorithms are used in PEMFC 

parameter extraction. This is a new application for these algorithms. They have shown satisfactory 

performance in other engineering problems. Therefore, it is worthwhile to use them in PEMFC modeling, 

which is a highly nonlinear problem. The performance of these algorithms is assessed based on a defined 

fitness function for 100 independent runs to show their robustness.      

3.1 Fitness function definition  

The optimization problem is normally defined by introducing a fitness function as the objective of 

minimization, the decision variables as the targeted parameters of estimation, and the search space formed 

by the upper and lower limits of each decision variable. The optimization algorithms use the fitness function 

to direct the population towards better solutions. The main goal of the fitness function definition, based on 

which all the algorithms are compared, is to extract the steady-state model parameters by minimizing the 

sum of squared errors (SSE) between the output voltage of each PEMFC stack and the estimated voltage 

by the model. The main reason for defining such fitness function is that it is commonly used in the literature 
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[26] and makes the results of this work comparable to the existing optimizers in other manuscripts. This 

fitness function can be formulated by:                                                                   

{
  
 

  
 

𝐦𝐢𝐧

(
steady − state
params.

)
∑ (𝑉𝐹𝐶,𝑚𝑒𝑎𝑠(𝑖) − 𝑉𝐹𝐶,𝑒𝑠𝑡(𝑖))

2𝑁
𝑖=1

𝜉𝑘,𝑚𝑖𝑛 ≤ 𝜉𝑘 ≤ 𝜉𝑘,𝑚𝑎𝑥⁡(k = 1…4)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑅𝐶,𝑚𝑖𝑛 ≤ 𝑅𝐶 ≤ 𝑅𝐶,max ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝜆⁡𝑚𝑖𝑛 ≤ 𝜆 ≤ 𝜆⁡𝑚𝑎𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝛽⁡𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽⁡𝑚𝑎𝑥⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

                                                                      (10) 

where 𝑉𝐹𝐶,𝑚𝑒𝑎𝑠 is the measured output voltage, 𝑉𝐹𝐶,𝑒𝑠𝑡 is the estimated output voltage by the model, and 𝑁 

is the number of sample data. The suitability of the estimated parameters value is scrutinized by testing the 

described PEMFC models in MATLAB software. It should be noted that selecting appropriate initial values 

for the parameters has a significant role in the quality of the estimation process. In this work, the fitness 

function is exposed to practical inequality constraints defined by the upper and lower bounds.  

3.2 Shuffled frog-leaping algorithm  

SFLA is considered as a memetic metaheuristic method put forward to find a global optimal answer by 

conducting an informed search [50]. It integrates the virtue of particle swarm optimization local search into 

the idea of combining the information from parallel local searches to a global solution. The population in 

SFLA is composed of a number of frogs/solutions, which are divided into some subsets known as 

memeplexes. Each memeplexe is the representative of a group of frogs performing a local search. Each 

individual frog inside of a memeplexe has an idea affected by the ideas of other individuals. This idea is 

improved through a memetic evolution. After a specific number of steps, ideas are shared among the 

memeplexes by means of a shuffling process. The process of shuffling as well as the local search are 

sustained until the expected convergence criteria are satisfied. Figure 1 shows the flowchart of the SFLA. 

According to this flowchart, an initial population is first generated randomly (𝑃) within the search space. 

In multidimensional problems, each frog 𝑖 is defined by 𝑆 variables as 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑆). The frogs are 

then put in a descending order with respect to their achieved fitness. After that the whole population is 



11 
 

partitioned into 𝑚 memeplexes, where each one includes 𝑛 frogs (𝑃 = 𝑚 × 𝑛). Each frog is placed into its 

corresponded memeplex, i.e. the first frog in the first memeplex, the second frog in the second memeplex, 

and the 𝑚th frog in the 𝑚th memeplex. The frog 𝑚 + 1 is sent back to the first memeplex again, and this 

continues until each frog finds a place in each memeplex. Inside each memeplex, the individual frogs with 

the best 𝑋𝑏, worst 𝑋𝑤, and global best 𝑋𝑔 finesses are determined and only the one with the worst fitness is 

improved as follows: 

𝐷𝑖 = 𝑟𝑎𝑛𝑑𝑛(𝑋𝑏 − 𝑋𝑤)                                                                                                                            (11) 

𝑋𝑤,𝑛𝑒𝑤 = 𝑋𝑤,𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 𝐷𝑖   (−𝐷𝑚𝑎𝑥 ≤ 𝐷𝑖 ≤ 𝐷𝑚𝑎𝑥)                                                                               (12) 

where 𝐷𝑖 is the frog position change, 𝑟𝑛𝑑 is a random number between 0 and 1, 𝑋𝑤,𝑛𝑒𝑤 is the new position 

of the frog with the worst fitness inside the feasible space, 𝑋𝑤,𝑝𝑟𝑒𝑠𝑒𝑛𝑡 is the current position of the frog with 

the worst fitness, and 𝐷𝑚𝑎𝑥 is the maximum possible variation in the position of a frog. It should be noted 

that if the formulated evolution results in a better solution, it replaces the worst solution. Otherwise, the 

equations (11) and (12) are repeated for the case that 𝑋𝑏 is replaced by 𝑋𝑔. In case of observing no 

improvement in the solution after trying the two mentioned scenarios, a new random solution is generated 

instead of the frog with the worst solution. The calculation is then continued for a particular number of 

iterations. The principal parameters of the SFLA are the population or the number of frogs, number of 

memeplexes, and maximum iteration for each memeplexe.  
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 Figure 1: SFLA flowchart 

3.3 Imperialist competitive algorithm  

ICA is an imperialistic inspired method which has been successfully implemented in different engineering 

problems [51, 52]. The flowchart of this algorithm is shown in Figure 2. This algorithm commences by 

generating some random solutions, known as countries containing the optimization problem variables 

(𝑝1, 𝑝2, … , 𝑝𝑁𝑣𝑎𝑟), in the search space. 𝑁𝑣𝑎𝑟 is the dimension of the problem. The initial countries are then 

divided into two classes of imperialist and colony according to their power which is determined by the 

defined cost function of the optimization problem. 

𝐶𝑜𝑢𝑛𝑡𝑟𝑦 = [𝑝1, 𝑝2, … , 𝑝𝑁𝑣𝑎𝑟]                                                                                                              (13) 

𝐶𝑜𝑠𝑡 = 𝑓(𝑝1, 𝑝2, … , 𝑝𝑁𝑣𝑎𝑟)                                                                                                                  (14) 

The primary empires are established by distributing the colonies among the imperialists. The colonies are 

divided among the imperialists proportionally by:  
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𝐶𝑛 = 𝑐𝑛 −max⁡{𝑐𝑖}                                                                                                                              (15)              

𝑝𝑛 = |𝐶𝑛 ∑ 𝐶𝑖
𝑁𝑖𝑚𝑝
𝑖=1

⁄ |                                                                                                                             (16)     

𝑁𝐶𝑛 = 𝑟𝑜𝑢𝑛𝑑{𝑝𝑛⁡𝑁𝑐𝑜𝑙}                                                                                                                      (17) 

where 𝑐𝑛 and 𝐶𝑛 are the nth imperialist cost and normalized cost respectively, 𝑝𝑛 is the normalized power 

of each imperialist, 𝑁𝑖𝑚𝑝 is the number of imperialists, 𝑁𝐶𝑛 is the nth empire initial number of colonies 

chosen randomly, and 𝑁𝑐𝑜𝑙 is the number of colonies. The empires then go thorough assimilation and 

revolution processes in which colonies move towards the states of the imperialists with random 

characteristics. If a colony reaches a better position than its corresponding imperialist (considering the cost 

function), they exchange positions. The movement of colonies and total power of an empire can be 

formulated by: 

{𝑥}𝑛𝑒𝑤 = {𝑥}𝑜𝑙𝑑 + 𝑈(0, 𝜎 × 𝑑) × {𝑉1}                                                                                               (18) 

𝜃 = 𝑈(−𝛾,+𝛾)                                                                                                                                    (19) 

𝑇𝐶𝑛 = 𝑓𝑐𝑜𝑠𝑡
(𝑖𝑚𝑝,𝑛)

+𝜓(∑ 𝑓𝑐𝑜𝑠𝑡
(𝑐𝑜𝑙,𝑖)𝑁𝐶𝑛

𝑖=1 𝑁𝐶𝑛⁄ )                                                                                           (20)  

where 𝜎 is a parameter greater than one, 𝑑 is the distance between colony and imperialist, {𝑉1} is a vector 

with unity length, 𝜃 is a random number with uniform distribution added to the direction of movement to 

enhance the searching around the imperialist, 𝛾 is a parameter that modifies the deviation from the original 

direction, 𝑇𝐶𝑛 is the total cost of the nth empire, and 𝜓 is a positive number less than one. The values of 2, 

0.1, and 0.1 have been found to be good for 𝜎, 𝛾, and 𝜓 respectively. The imperialistic competition slowly 

decreases the power of weaker empires and increases the power of more powerful ones by choosing the 

weakest colony of the weakest empire and giving it to the empire with the most possession probability (𝑃𝑛). 

When an empire loses all its colonies, it will be eliminated. The normalized total cost and the possession 

probability of each empire are given by: 
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𝑁𝑇𝐶𝑛 = 𝑇𝐶𝑛 −max⁡(𝑇𝐶𝑖)                                                                                                                   (21)  

𝑃𝑛 = |𝑁𝑇𝐶𝑛 ∑ 𝑁𝑇𝐶𝑖
𝑁𝑖𝑚𝑝
𝑖=1

⁄ |                                                                                                                   (22) 

 

 Figure 2: ICA flowchart 

3.4 Firefly Optimization Algorithm  

FOA is a metaheuristic algorithm premised on the social behavior of fireflies for attracting mates [53]. FOA 

is based on three fundamental presumptions. First, all the fireflies are perceived as unisex and try to 

approach the brighter ones until the whole population is compared. Second, the attraction of the fireflies is 

associated with the potency of their flash signals. This means that in case of having the choice for moving 

towards two fireflies, the brighter one is preferred. It should be noted that the brightness declines as the 

distance increases. Third, brightness intensity of a firefly is calculated by the value of the optimization 

problem fitness function. The FOA can be mathematically presented by the following equations: 

𝜔(𝑟) = 𝜔0 exp(−𝜅𝑟
𝑚) ,𝑚 ≥ 1                                                                                                            (23) 

𝑟𝑖𝑗 = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑑

𝑘=1                                                                                                                     (24) 

𝑥𝑖 = 𝑥𝑖 +𝜔0 exp(−𝜅⁡𝑟𝑖𝑗
2)⁡(𝑥𝑗 − 𝑥𝑖) + 𝛼⁡(𝑟𝑎𝑛𝑑𝑛 − 1 2⁄ )                                                                 (25) 
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Where 𝜔(𝑟) is the attractiveness, 𝑟 is the distance between two fireflies, 𝜔0 is the initial attractiveness 

when 𝑟 is zero, 𝜅 is a fixed light absorption factor, 𝑑 is the dimension of the problem, 𝑥𝑖 and 𝑥𝑗 are the 

positions of two 𝑖 and 𝑗 fireflies, 𝛼 is a value between zero and one, and 𝑟𝑎𝑛𝑑𝑛 is a random number 

generator uniformly and distributed between [0, 1]. Figure 3 presents the flowchart of the FOA. 

 

 Figure 3: FOA flowchart 

4 Results and discussion  

This section presents the achieved results from different parts of the manuscript. First, the results related to 

the available PEMFC case studies in the literature are investigated, and the algorithms are compared. 

Subsequently, the data related to the proposed case study of this work, which is a 500-W Horizon PEMFC, 

is presented along with the description of the utilized test bench for recording the measured data. Finally, 

the estimation quality of the open cathode PEMFC is studied. It should be noted that the controlling 

parameters used for each algorithm are listed in Table 3. These parameters have been obtained based on the 

introduced reference papers and trials and errors over several runs. These algorithms might show better or 

worse performance by changing the controlling parameters and that is why they are clarified in Table 3.  

Another worth noting aspect is that since the metaheuristic techniques intrinsically have high level of 

randomness, 100 independent runs are done for each algorithm and the best result is then chosen out of 
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these tries. The robustness of the algorithms is investigated by means of some statistical factors, such as 

variance and standard deviation of the defined fitness function. Moreover, the point-by-point measured 

data, which are the input of the algorithms, are reported for all the case studies.  

Table 3: Controlling parameters of the utilized algorithms 

SFLA ICA FOA 
Parameter Value Parameter Value Parameter Value 

Maximum iteration 100 Maximum iteration 100 Maximum iteration 100 
Frog population 50 Number of countries 50 Number of fireflies 50 
Number of 
Memeplexes 5 Number of 

imperialists 10 Light Absorption 
Coefficient 1 

Memes in 
Memeplexes 10 Assimilation 

coefficient 2 Attraction coefficient base 
value 2 

Memetic evolutions 10 Revolution 
probability 0.1 Mutation coefficient 0.2 

 

4.1 Case study 1 (NedSstack PS6)  

This case study belongs to a NedSstack PS6 PEMFC stack with the rated power of 6 kW. The operating 

data of this PEMFC system can be found in [30], and its characteristics are as follows: 𝑁𝑐𝑒𝑙𝑙 = 65, 𝑃𝐻2 = 1 

atm, 𝑃𝑂2 = 1 atm, 𝑇𝑠𝑡𝑎𝑐𝑘 = 343 K, 𝐴 = 240 cm2, 𝑙 = 178 μm, and 𝐽𝑚𝑎𝑥= 0.918 A cm-2. The maximum 

operating current of this PEMFC is 225 A. Table 4 indicates the obtained values for each targeted parameter 

after implementing the algorithms for parameter extraction process. This table also shows the best fitness 

value attained by each algorithm, which corresponds to the reported estimated parameters. The obtained 

best solutions by the introduced algorithms in this work shows that they have considerable accuracy in 

terms of extracting the parameters of this PEMFC system. The estimated polarization curve of the 

NedSstack PS6 PEMFC stack by SFLA algorithm is shown in Figure 4a. SFLA has reached the best fitness 

value, which is the minimum SSE between measured and predicted voltage. It is worth mentioning that the 

point-by-point current-voltage values obtained by all of the three algorithms are also reported in Table A.1 

in the appendix section. The fitness function convergence trend for different algorithms is presented in 

Figure 4b. With regard to this figure, the fitness value minimization trend has become almost stable after 

20 iterations by all the algorithms.                             
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Table 4: The estimated parameters along with the best fitness value  

Parameter SFLA ICA FOA SSO [30] GHO [31] GA [31] 
𝜉1 -1.023071 -1.034322 -1.035664 -0.9719 -1.1997 -1.1997 

𝜉2 × 10
−3 3.4760 3.3202 2.9502 3.3487 3.5505 3.4172 

𝜉3 × 10
−5 7.7883354  6.4420795  3.7669451  7.9111 4.6144 3.6000 

𝜉4 × 10
−5 -9.540000 -9.540000 -9.540000 -9.5435 -9.5400 -9.5400 

𝑅𝐶 (Ω)⁡× 10−4 1.62 1.65 1.622 1.000 1.005 1.376 
𝜆 15.03229 15.09701 15.029691 13.0000 13.0092 13.0000 

𝛽 (V) 0.013600 0.013600 0.0136000 0.0534 0.0579 0.0359 
Best fitness (SSE) 2.167055 2.168339 2.167091 2.18067 2.18586 2.4089 

 

 
Figure 4: NedSstack PS6 PEMFC case study: a) estimated polarization curve by SFLA, b) fitness 

function (SSE) minimization trend comparison  

 

4.2 Case study 2 (BCS 500-W)  
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The second case study of this manuscript investigates the polarization behavior of the BCS 500-W PEMFC 

stack produced by the American Company BCS Technologies. The characteristics of this FC, which have 

been collected from [32], are as follows: 𝑁𝑐𝑒𝑙𝑙 = 32, 𝑃𝐻2 = 1 atm, 𝑃𝑂2 = 0.2075 atm, 𝑇𝑠𝑡𝑎𝑐𝑘 = 333 K, 𝐴 = 

64 cm2, 𝑙 = 178 μm, and 𝐽𝑚𝑎𝑥=0.469 A cm-2. The maximum operating current of this system is 30.016 A. 

Table 5 presents the estimated parameters and the best fitness achieved for BCS 500-W PEMFC stack by 

different algorithms. According to Table 5, the utilized algorithms have successfully extracted the suitable 

parameters for this case study. Moreover, compared to the available optimizers in the literature, some 

improvement in the minimum value of the defined fitness function can be observed. Table 5 also shows 

that SFLA has obtained the minimum value in terms of the defined fitness function. Figure 5a presents the 

estimated polarization curve by SFLA. The point-by-point current-voltage values achieved by all of the 

optimization methods are also reported in Table A.2 in the appendix. Figure 5b compares the minimization 

tend of different algorithms. As it is seen, ICA and SFLA converges faster than the FOA.                 

Table 5: The identified parameters and the corresponded fitness value  

Parameter SFLA ICA FOA SSO [30] DEM [30] GWO [32]  
𝜉1 -0.965740 -0.908643 -0.992829 -0.8532 -0.948 -1.0180 

𝜉2 × 10
−3 3.080 2.4798 2.621 4.8115 4.8115 2.3115 

𝜉3 × 10
−5 7.223600 4.4583194 3.746368 9.4334 7.6000 5.2400 

𝜉4 × 10
−5 -19.3 -19.3 -19.3 -19.205 -19.300 -12.815 

𝑅𝐶 (Ω)⁡× 10−4 1.00 2.46 1.00 3.499 3.000 7.504 
𝜆 20.88622 22.66264 21.101126 23 23 18.8547 

𝛽 (V) 0.016126 0.016238 0.016269 0.01589 0.0160 0.0136 
Best fitness 0.011697 0.011856 0.011819 0.01219 0.01299 7.1889 
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Figure 5: BCS 500-W PEMFC case study: a) estimated polarization curve by SFLA, b) fitness function 

(SSE) minimization trend comparison  

 

4.3 Algorithm selection  

In fact, all the three utilized algorithms in this manuscript have already shown a great potential for solving 

different engineering problems. So far, it has been observed that these algorithms are able to improve the 

defined best fitness value of this work (SSE between the measured and estimated voltage) compared to 

other available optimizers in the literature. Realized by the performed comparative study of the standard 

form of these algorithms in this work, it can be stated that ICA and FOA algorithms are more prone to 

premature convergence than SFLA, as shown in Figure 4b and Figure 5b. This is mainly due to the fact that 

SFLA combines the merits of genetic-based memetic and social behavior-based algorithms. It executes 

concurrently an independent local search inside each memeplex, and the entire frogs are then shuffled and 
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reorganized into new memeplexes after a predefined number of local iterations to ensure global exploration. 

Concerning the FOA, one of the reasons for its premature convergence is the dependency of the updates on 

the current performance and not having a knowledge of the preceding best solutions. To alleviate this 

drawback, a new updating strategy can be formulated for FOA in future and the random and attraction 

movement parameters can be modified. Regarding the ICA, its performance can be improved by paying 

more attentions to the tuning parameters, which are more critical than the ones in other optimizers, 

especially the deviation parameter of the assimilation process. This parameter has a direct impact on 

achieving a balance between local and global explorations.  

Another noteworthy aspect is that the performance of these algorithms is based on randomness and the sole 

best fitness value (SSE) in one of the runs cannot assure the acceptable performance of the optimization 

algorithm. As mentioned earlier, the listed values in Table 4 and Table 5 belong to the best solution found 

out of 100 independent runs, and there is no guarantee that the algorithms can repeat the same results. In 

this regard, some statistical measures, namely best, worst, variance, and standard deviation, are calculated 

by using the obtained best fitness values through each of the independent runs to show the robustness and 

probability of finding the optimal answer by the algorithms. These statistical factors are listed in Table 6. 

Variance value shows how far a set of numbers are from their mean value and in this case the lesser the 

variance the better. Standard deviation also specifies the scattering of the data and a low value for this 

measure means the data tends to be closer to the average of the set. Table 6 includes the results of the 

mentioned statistical measures for SSO algorithm, in addition to SFLA, FOA, and ICA. This is because 

SSO has already shown a very good performance from itself over 100 independent runs. Moreover, the 

required data for calculating all the measures for this algorithm are available in [30]. According to Table 6, 

SFLA has achieved the lowest value in terms of variance and standard deviation compared to other 

algorithms. However, neither ICA nor FOA could achieve a better result than SSO. This superior 

performance of SFLA justifies the previously discussed advantages of this algorithm regarding the 

simultaneous local and global exploration. In this respect, SFLA algorithm is selected to be used for the 
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optimization of the 500-W Horizon PEMFC, which is a new case study introduced in this work. It should 

be noted that this selection has been made based on the defined comparison criteria and utilized controlling 

parameters and it does not mean that the other two introduced algorithms are not suitable for parameters 

estimation of a PEMFC model. In fact, all the three algorithms are able to predict the PEMFC polarization 

curve with good accuracy. However, SFLA shows more robustness than the others do in the investigated 

cases.   

Table 6: Statistical measures comparison 

Case study Computed 
factor SFLA ICA FOA SSO [30] 

1 

Best 2.167055 2.168339 2.167091 2.18067 
Worst 2.167598 2.518191 2.614219 2.25060 

Variance 1.06829× 10−8 0.005940 0.016838 4.131× 10−4 
Standard 
deviation 1.03358× 10−4 0.077072 0.129763 0.0203 

2 

Best 0.011697 0.011856 0.011819 0.01219 
Worst 0.011698 0.034665 0.030233 0.01520 

Variance 2.53971× 10−15 3.43806× 10−5 1.74131× 10−5 7.588× 10−7 
Standard 
deviation 5.03955× 10−8 0.005863 0.004172 8.711× 10−4 

 

4.4 Case study 3 (500-W Horizon PEMFC)  

The last case study of this work, which is the main focus of this manuscript, is for an open cathode 500-W 

Horizon PEMFC. In order to collect justifiable experimental data and provide the required measurements 

for extracting the PEMFC model parameters, an experimental set-up has been developed as explained in 

details in section 4.4.1. Moreover, the obtained results regarding the performance verification of the SFLA 

algorithm as well as the tuned semi-empirical model are presented in section 4.4.2.   

4.4.1 Materials and methods 

The required data for the proposed new case study has been recorded from a developed test bench, shown 

in Figure 6, in Hydrogen Research Institute of Université du Québec à Trois-Rivières with a standard 

protocol. This test bench is used to test and validate the SFLA algorithm and the extracted PEMFC model. 
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The set-up is mainly composed of a Horizon open-cathode PEMFC with a rated power of 500 W. The 

PEMFC characteristics, gathered from [54] and the manufacture manual, are presented in Table 7. This 

PEMFC is self-humidified, air-cooled, and known as open-cathode or air breathing. It has two axial fans to 

provide the cathode with air and to cool down the stack. The flow rate of air supplied to the cathode side is 

controlled by the duty cycle of the fan which is strongly reliant on the requested power from the PEMFC 

and the stack temperature. In the anode side, the PEMFC is equipped with an inlet and an outlet valve. The 

inlet valve is utilized to feed the PEMFC with dry hydrogen. The hydrogen flow rate changes between 0 

and 11.67 × 10−2 Ls−1 depending on the drawn power from the stack. The outlet valve is responsible for 

purging the accumulated water and nitrogen every 10 s for a duration of 10 ms to refill the anode with fresh 

hydrogen during the PEMFC operation. The exhaust flow of hydrogen after the purge rests on the difference 

of pressure between the environment (1 atm) and the anode side (1.48 atm as suggested by the 

manufacturer). Furthermore, the pressure difference between the anode and the cathode sides must not 

surpass 0.493 atm to prevent the membrane from being damaged. The control of the purge valve, fan speed, 

and hydrogen valve are performed through the PEMFC controller, and the acquisition of data (temperature, 

current, and voltage) are done by an embedded computer (National Instrument CompactRIO 9022). A 

programmable load manufactured by BK Precision with a maximum power of 1200 W is connected to the 

PEMFC in order to request different power profiles form the stack. The communication between the 

CompactRIO and the PC is via Ethernet connection every 100 ms. The measured data (temperature, current, 

and voltage) from the real PEMFC is transferred to the PC by means of the CompactRIO and is used in the 

PEMFC model verification process. 

Table 7: The characteristics of the Horizon 500-W open cathode PEMFC 

Technical specification 
Type of FC PEM 

Rated Power 500 W 
Rated performance 22 V @ 23.5 A 

Max Current 42 A 
Rated H2consumption 7 SLPM 
Ambient temperature 5 to 30 ℃ 

Max stack temperature 65 ℃ 



23 
 

Cooling Air (integrated cooling fan) 
Reactants Hydrogen and Air 
𝑁𝑐𝑒𝑙𝑙 36 
𝑃𝐻2 0.55 atm 
𝑃𝑂2 1 atm 
𝐴 52 cm2 
𝑙 25 μm 

𝐽𝑚𝑎𝑥 0.446 A cm-2 
 

It should be noted that in this new case study the temperature is variable as opposed to other available case 

studies in the literature. The voltage-current curve of this PEMFC has been obtained by drawing a fixed 

current from the FC and measuring its output voltage. By slowly stepping up the load, the FC voltage 

response can be seen and recorded. After each increase in the current level, 15 to 25 minutes have been 

allowed to the FC to reach equilibrium. As opposed to the other two case studies in which the temperature 

is constant, this FC system reaches one stable temperature for each current level. It means that for each 

current level, there is one corresponded voltage and temperature measurement. All the tests have been 

conducted in a stable environment in the test center of Hydrogen Research Institute to maintain the 

conditions. Another point which needs to be mentioned is that the actual rated power of the utilized PEMFC 

in this work is 430 W with a maximum current of 25 A. In fact, the rated power of this PEMFC has 

decreased over time due to degradation.  
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Figure 6: The developed test bench in Hydrogen Research Institute 

4.4.2 Experimental Results  

Table 8 presents the identified values for each unknown parameter after using the SFLA for parameter 

extraction. This table also shows the best fitness value achieved by using the identified parameters. 

Table 8: The identified parameters and the obtained fitness value for 500-W Horizon PEMFC   

Parameter Estimated value by SFLA 
𝜉1 -0.853200 

𝜉2 × 10
−3 2.522 

𝜉3 × 10
−5 7.843743 

𝜉4 × 10
−5 -16.3 

𝑅𝐶 (Ω)⁡× 10−4 7.999 
𝜆 13 

𝛽 (V) 0.048869 
Best fitness 0.015622 

 

The polarization characteristics of the 500-W Horizon PEMFC stack are reported point by point in Table 9 

and shown in Figure 7a. The minimization trend of the fitness function is represented in Figure 7b. It can 

be seen that the stable value is achieved after almost 10 iterations. 
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Figure 7: 500-W Horizon PEMFC case study: a) estimated polarization curve by SFLA, b) fitness 

function (SSE) minimization trend comparison  

  

Table 9: The steady-state characteristics of the 500-W Horizon PEMFC    

 Current (A) 𝑉𝐹𝐶,𝑚𝑒𝑎𝑠 (V) 𝑉𝐹𝐶,𝑒𝑠𝑡 (SFLA) |Residual| Temperature (K) 
0.6 29.370000 29.514760 0.144759 296.200000 
2.5 26.777390 26.813765 0.036374 297.810917 
5 25.290250 25.287802 0.002448 299.520062 

7.5 24.281859 24.235411 0.046448 301.227449 
10 23.418000 23.356632 0.061367 302.950000 
12 22.739103 22.709020 0.030083 304.404279 
14 22.058523 22.078801 0.020277 306.006926 
16 21.386148 21.442688 0.056540 307.842680 
18 20.721728 20.775549 0.053821 309.994399 
20 20.026000 20.041864 0.015864 312.532000 
21 19.636350 19.632033 0.004317 313.961094 
22 19.191807 19.176821 0.014986 315.501399 
23 18.663630 18.653590 0.010040 317.153087 
24 18.015227 18.020263 0.005036 318.913454 
25 17.201250 17.182838 0.018412 320.776562 
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In order to assess the probability of achiving a satisfactory fitness values, the previous defined statistical 

measures are calculated for this new case study. Figure 8 presents the histogram of the obtained best fitness 

value over 100 independent runs. The statistical measures are also reported in this figure to clarify the 

histogram plot. As it can be seen in this histogram, the frequency of obtaining the best fitness value is 

strikingly high by SFLA ensuring the reliablity of this metaheuristic algorithm. Figure 9 presents the 

simulated performance analysis of the 500-W Horizon PEMFC over various partial pressures of hydrogen 

in the anode side (𝑃𝐻2). Since this FC is an open cathode PEMFC, the pressure in the cathode side (𝑃𝑂2) is 

always 1 atm. As is obsereved in Figure 9, regulating the pressure under 0.55 atm can results in less output 

power by the PEMFC. While setting a value more than 0.55 atm can increse the output power to some 

extent.       

 

Figure 8: The histogram analysis of SFLA 
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Figure 9: Polarization behaviour analysis in different partial pressures of hydrogen 

 

To further evaluate the performance of the tuned PEMFC model by the SFLA algorithm, the presented 

current profile in Figure 10a has been applied to the Horizon PEMFC on the develped test bench and its 

stack temperature and voltage signals have been recorded. Subsequently, the same current profile has been 

imposed to the PEMFC model and its voltage estimation is compared with the measured one in Figure 10b. 

According to this figure, the tuned PEMFC model is able to imitate the output voltage of the real PEMFC 

satisfactorily. It should be noted that the PEMFC model is fed with the measred temperature, shown in 

Figure 10a, to predict the output voltage.  
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Figure 10: Performance validation of the tuned PEMFC model for the Horizon 500-W PEMFC 
case study: a) the current profile applied to the real PEMFC and the corresponding measured 

temperature, and b) the comparison of the estimated and measured voltage. 

     

5 Conclusion  

This paper investigates the performance of three metaheuristic optimization algorithms, namely SFLA, 

ICA, and FOA, in a PEMFC parameter extraction problem. In this regard, the performance comparison of 

the algorithms is performed by using the SSE between the measured and estimated PEMFC voltage as the 

fitness function for two available case studies in the literature over 100 independent runs. Subsequently, 

the precision of the algorithms is judged based on their achieved best fitness value, worst fitness value, 

variance, and standard deviation. Finally, the selected algorithm from the comparison step is used to identify 

the parameters of the PEMFC model for a new case study, a 500-W Horizon PEMFC, provided by this 

work. This new case study is an open cathode PEMFC and has variable temperature as opposed to the other 

existing case studies in the literature. The final results of this work indicate that with regard to the best SSE, 

SFLA slightly outperforms ICA and FOA in both case studies. However, the obtained worst SSEs show 

that SFLA performs 20% better than ICA and two times better than FOA in the first and second case studies. 
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Moreover, the attained variance and standard deviation of SFLA are noticeably less than the other 

algorithms which are the justification of accuracy and repeatability of this method. The results of this paper 

opens up the following avenues for future researches: 

• Utilizing the selected optimization algorithm of this work in dynamic PEMFC model calibration. 

• Investigating the performance of new optimization algorithms by using the provided case study of 

this research.    

• Using the proposed metaheuristic optimization algorithms for a more complete PEMFC model 

including hydrogen consumption prediction. 
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Nomenclature 

Variables 

𝑉𝐹𝐶 Output voltage of the PEMFC, V 
𝐸𝑁𝑒𝑟𝑛𝑠𝑡 Sum of cell reversible voltage, V 
𝑉𝐴𝑐𝑡 Activation voltage, V 
𝑉𝑂ℎ𝑚𝑖𝑐 Ohmic voltage, V 
𝑉𝐶𝑜𝑛 Concentration voltage, V 
𝑁𝑐𝑒𝑙𝑙 Number of cells 
𝑇𝑠𝑡𝑎𝑐𝑘 Stack temperature, K 
𝑃𝐻2 Hydrogen partial pressure in anode side, atm 
𝑃𝑂2 Oxygen partial pressure in cathode side, atm 
𝑅𝐻𝐶 Relative humidity of vapor in the cathode, % 
𝑅𝐻𝑎 Relative humidity of vapor in the anode, % 
𝑃𝐶 Cathode inlet pressures, atm 
𝑃𝑎 Anode inlet pressures, atm 
𝐼𝐹𝐶 FC operating current, A 
𝐴 Active area of the membrane, cm2 
𝑃𝐻2𝑂
𝑠𝑎𝑡  Saturation water pressure, atm 
𝜉𝑘 Semi-empirical coefficients 
𝐶𝑜2 Oxygen concentration, mol cm-3 
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𝑅𝑚 Membrane resistance, Ω 
𝑅𝐶 Equivalent contact resistance to electron conduction, Ω 
𝜌𝑚 Resistivity of the membrane, Ω cm 
𝑙 Membrane thickness, cm 
𝐽 Actual current density, A cm-2 

𝜆 Adaptable parameter related to the water content of the membrane 
𝛽 Parametric coefficient 
𝐽𝑚𝑎𝑥 Maximum current density, A cm-2 

𝑉𝐹𝐶,𝑚𝑒𝑎𝑠 Measured output voltage, V 
𝑉𝐹𝐶,𝑒𝑠𝑡 Estimated output voltage by the model, V 
𝑁 Number of sample data 
𝑃 Initial population 
𝑋𝑖 Individual frog solution 
𝑚 Memplexe 
𝑛 Number of frog per memplex 
𝑋𝑏 Best frog solution 
𝑋𝑤 Worst frog solution 
𝑋𝑔 Global best frog solution 
𝐷𝑖 Frog position change 

𝑋𝑤,𝑛𝑒𝑤 New position of the frog with the worst fitness 
𝑋𝑤,𝑝𝑟𝑒𝑠𝑒𝑛𝑡 Current position of the frog 
𝐷𝑚𝑎𝑥 Maximum possible variation in the position of a frog 
𝑝𝑁𝑣𝑎𝑟  Countries containing the optimization problem variables 
𝑁𝑣𝑎𝑟 Dimension of the problem 
𝐶𝑛 Nth imperialist normalized cost 
𝑐𝑛 Nth imperialist cost 
𝑝𝑛 Normalized power of each imperialist 
𝑁𝑖𝑚𝑝 Number of imperialists 
𝑁𝐶𝑛 Nth empire initial number of colonies 
𝑁𝑐𝑜𝑙 Number of colonies 
𝜎 Tuning parameter of ICA 
𝑑 Distance between colony and imperialist 
{𝑉1} Vector with unity length 
𝜃 Random number with uniform distribution 
𝛾 Ratio of deviation from the original direction 
𝑇𝐶𝑛 Total cost of the nth empire 
𝜓 Empirical forgetting factor of ICA 
𝑃𝑛 Possession probability 
𝜔(𝑟) Attractiveness 
𝑟 Distance between two fireflies 
𝜔0 Initial attractiveness 
𝜅 Fixed light absorption facto 
𝑑 Dimension of the problem 
𝑥𝑖 Positions of 𝑖 firefly 
𝛼 Tuning parameter of FOA 
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Abbreviations 

SFLA Shuffled Frog-Leaping Algorithm 
FOA Firefly Optimization Algorithm 
ICA Imperialist Competitive Algorithm 
SSE Sum Square Error 
PEMFC proton exchange membrane fuel cell 
FC Fuel Cell 
CS-EO Cuckoo search algorithm with explosion operator 
SSO Slap swarm optimizer 
GHO Grasshopper optimization 
GWO Grey wolf optimizer 
AC-POA Aging and challenging P systems based optimization algorithm 
TLBO–DE Hybrid teaching learning based optimization – differential evolution 
GRG Generalized reduced gradient 
HADE Hybrid adaptive differential evolution 
GA Genetic algorithm 
TRADE Transferred adaptive differential evolution 
STLBO Simplified teaching-learning based optimization 
ADE Adaptive differential evolution 
DEM dynamic electrochemical model 

 

Appendix  

Figure A.1 and Figure A.2 present the measured and estimated polarization curves for NedSstack PS6 and 

BCS 500-W respectively. Moreover, Table A.1 and Table A.2 provide the point-by-point data regarding 

the current-voltage characteristics of the NedSstack PS6 and BCS 500-W respectively in different 

scenarios. 

  

Figure A.1: Estimated polarization curves by different algorithms in case study 1 (NedSstack 
PS6)  
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Figure A.2: Estimated polarization curves by different algorithms in case study 2 (BCS 500-W)  

Table A.1: Estimated voltage for each current level (case study 1) 

Current (A) 𝑉𝐹𝐶,𝑚𝑒𝑎𝑠 (V) 𝑉𝐹𝐶,𝑒𝑠𝑡 (SFLA) 𝑉𝐹𝐶,𝑒𝑠𝑡 (ICA) 𝑉𝐹𝐶,𝑒𝑠𝑡 (FOA) 
2.25 61.64 62.274793 62.266538 62.274723 
6.75 59.57 59.702854 59.694581 59.702843 

9 58.94 58.972628 58.964351 58.972646 
15.75 57.54 57.424395 57.416125 57.424500 
20.25 56.8 56.648715 56.640467 56.648877 
24.75 56.13 55.978682 55.970471 55.978901 
31.5 55.23 55.096910 55.088779 55.097213 
36 54.66 54.564243 54.556183 54.564601 
45 53.61 53.585377 53.577508 53.585843 

51.75 52.86 52.903552 52.895867 52.904098 
67.5 51.91 51.418171 51.411066 51.418897 
72 51.22 51.011656 51.004757 51.012432 
90 49.66 49.428950 49.423070 49.429917 
99 49 48.651772 48.646526 48.652829 

105.8 48.15 48.066470 48.061764 48.067594 
110.3 47.52 47.679019 47.674699 47.680184 
117 47.1 47.100754 47.097055 47.101981 
126 46.48 46.318935 46.316158 46.320241 
135 45.66 45.528012 45.526266 45.529393 

141.8 44.85 44.922139 44.921248 44.923573 
150.8 44.24 44.106073 44.106419 44.107573 
162 42.45 43.061514 43.063578 43.063089 
171 41.66 42.191767 42.195365 42.193396 

182.3 40.68 41.047602 41.053336 41.049291 
189 40.09 40.331979 40.339095 40.333698 

195.8 39.51 39.565790 39.574404 39.567536 
204.8 38.73 38.457496 38.468245 38.459271 
211.5 38.15 37.507940 37.520399 37.509734 
220.5 37.38 36.442502 36.142308 35.725957 
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Table A.2: Estimated voltage for each current level (case study 2) 

Current (A) 𝑉𝐹𝐶,𝑚𝑒𝑎𝑠 (V) 𝑉𝐹𝐶,𝑒𝑠𝑡 (SFLA) 𝑉𝐹𝐶,𝑒𝑠𝑡 (ICA) 𝑉𝐹𝐶,𝑒𝑠𝑡 (FOA) 
0.60 29 28.997223 29.001417 28.993084 
2.10 26.31 26.305937 26.307798 26.301435 
3.58 25.09 25.093555 25.094224 25.089256 
5.08 24.25 24.254620 24.254447 24.250678 
7.17 23.37 23.375416 23.374433 23.372080 
9.55 22.57 22.584615 22.583084 22.582041 
11.35 22.06 22.071327 22.069605 22.069350 
12.54 21.75 21.758463 21.756711 21.756882 
13.73 21.45 21.461262 21.459553 21.460072 
15.73 21.09 20.987741 20.986259 20.987190 
17.02 20.68 20.694509 20.693271 20.694346 
19.11 20.22 20.230985 20.230291 20.231390 
21.20 19.76 19.770943 19.770945 19.771789 

23 19.36 19.366024 19.366701 19.367081 
25.08 18.86 18.866466 18.867889 18.867407 
27.17 18.27 18.274720 18.276501 18.274690 
28.06 17.95 17.953310 17.954837 17.952238 
29.26 17.30 17.292877 17.292559 17.288378 
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