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Abstract  

Output power of a fuel cell (FC) stack can be controlled through operating parameters 

(current, temperature, etc.) and is impacted by ageing and degradation. However, designing a 

complete FC model which includes the whole physical phenomena is very difficult owing to 

its multivariate nature. Hence, online identification of a FC model, which serves as a basis for 

global energy management of a fuel cell vehicle (FCV), is considerably important. In this 

paper, two well-known recursive algorithms are compared for online estimation of a multi-

input semi-empirical FC model parameters. In this respect, firstly, a semi-empirical FC model 

is selected to reach a satisfactory compromise between computational time and physical 

meaning. Subsequently, the algorithms are explained and implemented to identify the 

parameters of the model. Finally, experimental results achieved by the algorithms are 

discussed and their robustness is investigated. The ultimate results of this experimental study 

indicate that the employed algorithms are highly applicable in coping with the problem of FC 

output power alteration, due to the uncertainties caused by degradation and operation 

condition variations, and these results can be utilized for designing a global energy 

management strategy in a FCV.   

Keywords: Fuel cells, Global energy management, Online identification, Recursive 

algorithms, Semi-empirical calculations  
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1 Introduction 

Proton exchange membrane fuel cell (PEMFC) is a promising alternative energy conversion 

device in automotive applications, due to high efficiency and low adverse environmental 

impacts [1]. Fuel cell vehicles (FCVs) have shown a steady increase in the automotive 

market. However, their successful market penetration requires more improvement in terms of 

performance, reliability, and cost [2]. Hybridization of PEMFC with other sources, such as 

batteries, and supercapacitors (SCs), has been suggested as an effective measure to improve 

the mentioned factors in a FCV. Common structures for hybridization of FCVs are FC-

battery, FC-SC, and FC-battery-SC. All of these structures have their own advantages and 

disadvantages [3]. With all the favorable aspects of hybridization, the overall performance of 

FCVs, regarding fuel and energy consumption, still relies on the powertrain components 

efficiency and accurate coordination of sources. In this regard, several energy management 

strategies (EMSs), namely rule-based, optimization-based, and intelligent-based, have been 

proposed for the mentioned hybrid structures in the literature [4-6]. Some examples of very 

recent proposed online EMSs can be found in [7-11]. In [7], an online EMS based on data 

fusion approach is suggested. Three FLCs are then optimized and adapted, by Dempster-

Shafer evidence theory, to three driving conditions predicted by support vector machine. 

However, the design constraints of the controllers come from a static efficiency-power map of 

a PEMFC. In [8], an adaptive control method, based on tuning the FLC parameters for 

different conditions, is proposed. This work remarks on the decline of PEMFC output voltage 

due to degradation and suggests the rule base values modification under this condition. In [9], 

an online EMS based on extremum seeking method is suggested to maintain the PEMFC 

operating points in high efficiency region by means of a band-pass filter. A two-layer EMS 

composed of rule-based approach and particle swarm optimization has been proposed for real-

time control of FCVs in [10]. The rule-based of this work is based on a static PEMFC map. In 

[11], an EMS based on short-term energy estimation is developed to maintain the SC state of 
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energy within a defined limit.  The PEMFC limits are based on a quasistatic model, and 

determining the power rate limits to avoid premature ageing is pointed out as a remaining 

issue. 

Literature consideration shows that many of the existent EMSs in the literature are based on 

parametric PEMFC models, especially static models [12-14]. However, the performance of 

PEMFCs is influenced by the operating conditions variation (temperature, pressure, current, 

etc.), degradation, and ageing phenomena. Such performance drifts have made the design of a 

complete PEMFC model immensely complicated. There exists various PEMFC models 

capable of dealing with the variations of the operating conditions [15-19]. These models are 

by some means convincing, though not perfect, with regard to coping with the operating 

conditions variations. However, ageing phenomena modelling, which is a very complicated 

process, has not been resolved yet. In this respect, some researches have been conducted to 

track the real performance of a fuel cell system online. These works can be divided into two 

categories. The first category is based on extremum seeking strategies, such as maximum 

power point tracking [20-23]. The second category is based on a parametric identification 

coupled with an optimization algorithm. This approach is based on models and offers two 

solutions: 1) a straight solution is to use a model which considers the multi-physics behavior 

of the PEMFC. As previously mentioned, such a model is itself a study limitation; 2) the 

second solution is to utilize an online parameter estimation for a grey-box or black box model. 

Several studies have made a contribution concerning the online identification coupled with an 

optimization of PEMFC to obtain the best performance. Ettihir et al. have proposed the 

utilization of a semi-empirical model, which is only a function of current, with a recursive 

least square method to get the characteristics of the PEMFC online [24]. They have integrated 

their work into the EMS design of a FCV as well, and achieved interesting results [25-27]. 

Kelouwani et al. have suggested an experimental study based on tracing the maximum 

efficiency of the PEMFC. In this study, a polynomial model of the PEMFC efficiency is 
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introduced and the best efficiency is looked after by adjusting the control variables [28]. 

Methekar et al. have introduced an adaptive control of a fuel cell system with a Wiener model 

[29]. Dazi et al. have developed a predictive control to ascertain the maximum power 

operation of a fuel cell system [30]. In [31], an adaptive supervisory control strategy for a FC-

battery bus based on equivalent consumption minimization is proposed. In this paper, an 

algorithm has been used for charge-sustaining and a recursive least square has been employed 

for performance identification of the PEMFC. The utilized PEMFC model of this work is a 

single input semi-empirical model, which is only a function of current. The studied papers 

indicate that many online and real-time EMSs have been proposed for FCVs. However, only a 

few of them, like [24-27, 31], have tried to take into account the real characteristics of the 

PEMFCs.  

This paper aims at providing a basis for easy integration of a PEMFC real behavior into the 

design of real-time EMSs. In this regard, two recursive algorithms are introduced, and tested 

to identify the parameters of a semi-empirical model online. This integration provides one 

with online characteristics of a PEMFC, such as polarization curve, maximum power, and 

efficiency, which can be used in an EMS loop to update the constraints and related control 

laws. Compared to other works, the main contribution of this work is online parameters 

estimation of a multi-input (current, temperature, and pressure) semi-empirical model, which 

has eight parameters, simultaneously, as opposed to a single-input (current) model with four 

parameters used in [24-27, 31]. Since the intrinsic dynamic of current, temperature, and 

pressure are completely different, a multi-input model identification is more challenging than 

a single-input one. Moreover, a careful experimental study for comparing the effectiveness of 

the utilized identification methods is given along with a step-by-step explanation for adapting 

the algorithms to this particular problem. It should be noted that the employed PEMFC model 

in this work is a combination of the models introduced in [32-34]. The parameters of such 

model have been only estimated offline with various optimization algorithms in previous 
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studies [35-39]. However, in this work, parameter identification is performed online to 

counteract uncertainties that occur slowly over time, such as ageing, and quickly due to 

change of the operating conditions which are not considered in the model. The remainder of 

this paper is organized as follows. The explanation on how the proposed method of this work 

can be integrated into EMS design is given in section 2. The PEMFC model is presented in 

section 3. Section 4 deals with the explanation of identification algorithms. The obtained 

results of the work are discussed in section 5. Finally, the conclusion is given in section 6.    

        

  

2 Integration into energy management design  

The EMS of a multi-source system, like a FCV, can be designed in a way to increase system 

efficiency, lifetime, and autonomy by defining the operating points of the components. 

However, defining the operating points in a PEMFC is challenging since they steadily move 

across the operating space. With regard to FCVs, it is interesting to run the PEMFC at its 

efficient power range. As discussed earlier, many of the designed EMSs in the literature have 

used some constraints such as the maximum and minimum power range of the PEMFC. 

However, the power-current profile of a PEMFC changes due to the effect of operating 

conditions, such as temperature, and other disturbances like ageing phenomena. The variation 

of PEMFC characteristics acts like uncertainties in EMSs. When these variations are not 

tracked, they cause mismanagement in the EMS since they change the assumed limits in the 

controller. In this regard, this section describes how the results of this work can be included in 

the design of a global energy management in a FCV. The whole process is conducted online 

while the PEMFC is under operation. The global EMS comprises three stages, namely 

parameter identification, information extraction, and power split strategy. The objective is to 

do an online parameter identification to adapt the model to the performance drifts of the 

This is the peer reviewed version of the following article: Kandidayeni, M., Macias, A., Amamou, A. A., Boulon, L., & Kelouwani, S. (2018). Comparative Analysis of Two Online Identification Algorithms in a Fuel Cell System.  
Fuel Cells, 18(3), 347-358., which has been published in final form at http://dx.doi.org/10.1002/fuce.201800025. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use 
of Self-Archived Versions.



PEMFC, and then define the best operating points in the information extraction stage. 

Afterwards, the obtained data can be used in the power split strategy stage to control the 

power flow between the sources. This three-stage process is called global EMS, and is shown 

in Figure 1. It should be noted that this paper mainly deals with the design of the first two 

stages, which are the core of the explained global EMS. In fact, this paper focuses on the 

implementation of the recursive algorithms for estimating the parameters of a semi-empirical 

PEMFC model online, which is the first stage. Subsequently, the output of the identification 

process is employed for finding the maximum power of the PEMFC at each moment, which is 

the second stage. Finding the maximum power in the information extraction step is one given 

example out of several possibilities, such as maximum efficiency point (ηmax), minimum 

voltage (Vmin), maximum current (Imax), and so forth. The future works can use the provided 

basis in this article to design an online power split strategy. 

 

Figure 1: Global Energy Management (I, T, and P refer to operating current, temperature, and 

pressure respectively). 

In order to show the importance of taking the real behavior of the PEMFC into consideration, 

two PEMFCs with different levels of degradation are used in this paper. The exact age of each 

This is the peer reviewed version of the following article: Kandidayeni, M., Macias, A., Amamou, A. A., Boulon, L., & Kelouwani, S. (2018). Comparative Analysis of Two Online Identification Algorithms in a Fuel Cell System.  
Fuel Cells, 18(3), 347-358., which has been published in final form at http://dx.doi.org/10.1002/fuce.201800025. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use 
of Self-Archived Versions.



PEMFC has not been properly tracked. However, the polarization curves and the maximum 

deliverable powers of each PEMFC are shown in Figure 2, as a method of distinguishing the 

current state of each one. As it is observed, the rated power of one of the PEMFCs is almost 

400 W while the other one is 300 W. Throughout this manuscript, the less aged PEMFC, 

which has a higher rated power, is called Normal PEMFC, and the more aged one with less 

rated power is called Degraded PEMFC. The characteristics of a brand-new PEMFC, which 

has been obtained from the data sheet, are represented in Figure 2 as well to clarify the 

difference between the employed PEMFCs in this work and a new one.  

 

Figure 2: Polarization and power curves of new (from data sheet), Normal, and Degraded 

PEMFCs. 

It should be noted that the experimental polarization curves have been obtained by drawing a 

fixed current from the fuel cells and measuring their output voltage. By slowly stepping up 

the load, the fuel cell voltage response can be seen and recorded. After each increase in the 

level of current, 15 to 25 minutes have been allowed to the fuel cells to reach equilibrium. All 

the tests have been conducted in a stable environment in the test center of Hydrogen Research 

Institute (IRH) of Université du Québec à Trois-Rivières to maintain the conditions. Another 
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point which needs to be mentioned is that the employed PEMFCs in this work are Horizon H-

500 PEMFCs. The characteristics of a Horizon H-500 PEMFC is listed in Table 1. The 

difference between the rated power, shown in Table 1, and the utilized PEMFCs is due to the 

degradation. According to manufacturer, the H2 pressure should be regulated between 0.5 to 

0.6 Bar. Hence it can be stated that in the utilized air-breathing PEMFCs, the pressure is 

constant. 

Table 1: Horizon H-500 PEMFC characteristics 

PEMFC Technical specification 

Type of FC PEM 

Number of cells 36 

Active area 52 cm2 

Rated Power 500 W 

Rated performance 22 V @ 23.5 A 

Max Current (shutdown) 42 A 

Hydrogen pressure 50-60 kPa (0.5-0.6 Bar) 

Rated H2 consumption 7 l min 

Ambient temperature 5 to 30 °C 

Max stack temperature 65 °C 

Cooling Air (integrated cooling fan) 

 

3 Fuel cell modelling 

An electrochemical based PEMFC model has been utilized in this paper. In this type of 

model, the output voltage of FC (VFC) is considered as the sum of cell reversible voltage 

(ENernst) and voltage drops, namely activation (Vact), ohmic (Vohmic), and concentration or mass 

transport (Vcon). This type of model considers the same behavior for all the cells. The general 

formulation of an electrochemical FC model is as follows: 

 

VFC = n × (ENernst + Vact + Vohmic + Vcon)                      (1) 
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Where the unit of VFC and the voltage drops is volt and n is the number of cells. In this work, 

ENernst, which is the potential of FC without load in an open circuit, is calculated based on the 

following theoretical formula, proposed in [33].  

 

ENernst = 1.229 – 0.85×10-3 (T – 298.15) + 4.3085 × 10-5 T[ln(PH2) + 0.5ln(PO2)]                 (2) 

 

Where T is the stack temperature / K, PH2, and PO2 are the partial pressure / Pa of hydrogen in 

anode side and oxygen in cathode side. Vact is obtained by means of Eq. (3), introduced in 

[33]. 

 

Vact = ϒ1 + ϒ2T + ϒ3Tln(CO2) + ϒ4Tln(i)                       (3) 

CO2 = PO2/5.08×106 e-(498/T)                                              (4) 

 

Where i is the FC operating current / A, CO2 is the oxygen concentration / mol cm-3, and the 

ϒn (n = 1 … 4) is the empirical coefficients, based on fluid mechanics, thermodynamics, and 

electrochemistry and may differ depending on the cell material and manufacture.  

The formulation of Vohmic, shown in Eq. (5), is based on the proposed structure in [34]. This 

structure introduces an appreciable method to avoid struggling with the computation of water 

content and distribution. Eq. (5) is a function of temperature, due to the fact that diffusivities 

and water partial pressures change with temperature, and current, since proton and water 

fluxes alter with the current. 

 

Vohmic = -iRinternal = -i(ξ1 + ξ2T + ξ3i)                                                        (5) 

 

Where ξn (n = 1 … 3) are the parametric coefficients. The range of the parameters of ohmic 

region is validated by the value of Rinternal, which is the internal resistor / Ω. The range of 
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internal resistor has been obtained by current interrupt test, which is explained later in this 

section. Vcon is computed with the help of Eq. (6), proposed in [32, 40]. 

 

Vcon = αIGln(1 – βId)                                               (6) 

 

Where α is a semi-empirical parameter related to the diffusion mechanism and it is between 

0.3 to 1.8 [23], Id is the current density / Acm-2, G (between 1 and 4) is a dimensionless 

number which is related to the water flooding phenomena, and β is the inverse of the limiting 

current density / A-1cm2. The value of β is 1.2381.  

The introduced PEMFC model comprises 8 time-varying parameters, which need to be 

identified. In order to embrace the influence of degradation phenomenon, which happens 

slowly over time, and the operating conditions, which are not included in the model like 

humidity, the parameters should be identified online to adapt the model to real state of the 

PEMFC. Table 2 shows the targeted parameters for identification and their expected range of 

variation. The reported ranges have been adopted from previous studies [35-39], and the 

obtained values for the parameters of the employed PEMFC in this work may be slightly 

different. This deviation in the range is mainly due to the various used material in the fuel 

cells, fabrication methods, state of health of the reported fuel cells, and so forth.  

Table 2: Targeted Parameters for estimation 

  Parameters 
Range 

Minimum Maximum 

ϒ1 -1.997 -0.8532 

ϒ2 0.001 0.005 

ϒ3 3.6×10-5 9.8×10-5 

ϒ4 -2.6×10-4 -0.954×10-4 

α 0.0135 0.5 
ξ1 

Current interrupt test ξ2 

ξ3 
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3.1 Resistor measurement 

In order to relate the targeted parameters for estimating the internal resistor of the PEMFC to 

the realistic physical meaning, some measurements from the real value of resistor are needed. 

Therefore, in this paper, the current interrupt method is used as an electrochemical technique 

to obtain a range for the resistor variation with regard to current and temperature [41-44]. The 

efficacy of this method for measuring the ohmic resistance has been already investigated in 

[44]. Current interrupt test revolves around the idea of rapid acquisition of the measured 

voltage to separate ohmic from activation loss. Because, ohmic loss fades faster than 

electrochemical losses after the interruption of the current. Hence, the ohmic loss can be 

measured from the difference between the voltage immediately before and after the 

interruption. In comparison to other electrochemical methods such as electrochemical 

impedance spectroscopy, which is an effective frequency based method, current interrupt 

benefits from convenient data analysis. However, one of the challenges in current interrupt 

method is to obtain the point in which the voltage jumps and a fast oscilloscope is needed to 

deal with this problem. In this paper, the procedure for performing the current interrupt test is 

strictly according to [44].    

Table 3 shows different current levels in which the current has been interrupted as well as the 

corresponded temperature of each point. The PEMFC has been given enough time to reach a 

stable temperature for each current level before conducting the test. Moreover, the test has 

been done in a forced convection condition in which the fans of the PEMFCs have worked 

with a constant duty cycle of 34%.    

Table 3: Current levels and PEMFC stack temperature during resistor measurement 

Current / A Temperature / °C  

(Normal PEMFC) 

Temperature / °C  

(Degraded PEMFC) 

3 23.2 22.49 

6 25 24.87 

9 26.25 26.15 

12 28.2 28.1 

15 30.9 30.8 
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18 33.7 34.7 

21 38.15 - 

24 44.7 - 

25 49.4 - 

    

Figure 3 presents the variation of the resistor with respect to current and temperature for both 

of the Normal and Degraded PEMFCs. As it is seen, the value of resistor in the Degraded 

PEMFC is more than the Normal PEMFC. These measurements are used as a tool to check 

the range of estimated resistor by the identification algorithms.  

 

Figure 3: Resistor change with respect to current (a), and temperature (b). 

 4 Parameter identification algorithms 

With respect to the aims and objectives of the problem, the process of identification can be 

conducted offline or online. In offline identification, the process data is first gathered in a data 

storage, and then it is transferred to a computer and evaluated. However, in online 

identification, which is the focus of this work, information is processed online after each 

sample [45]. In Online identification, there is no need to save the information because the 

recursive algorithms are used, and the model is updated as the data comes in. The aim of this 
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work is to apply and compare two commonly algorithms in self-tuning control for the 

problem of PEMFC parameters estimation. RLS is used to deal with linear regression model 

estimation, and RML can be used to estimate the parameters and the noise dynamics, as 

described below.  

 

4.1 RLS algorithm 

RLS algorithm is based on the concept of minimizing the error related to input signal. RLS 

gives excellent performance when operating in time varying conditions. Assuming that noise 

is serially uncorrelated and independent of the elements of the regression vector, RLS 

algorithm can be applied to a linear-in-parameter system to estimate the parameters, and the 

model can be called a linear regression. The utilized RLS in this work is formulated as below. 

 

y(t) = θ(t)Tφ(t) + v(t)                                                                                                               (7) 

θ(t) = θ(t – 1) + k(t)E(t)                                                                                                          (8) 

k(t) = λ-1P(t – 1)φ(t)/(1 + λ-1φT(t)P(t – 1)φ(t))                                                                        (9) 

P(t) = λ-1P(t – 1) – λ-1k(t)φT(t)P(t – 1)+ ΒI                                                                             (10) 

λ(t) = ω – (1 – ω/φT(t)P(t – 1)φ(t));   if φT(t)P(t – 1)φ(t) > 0                                   (11) 

λ(t) = 1;                                              if φT(t)P(t – 1)φ(t) = 0                                       (12) 

E(t) = u(t) – φT(t) θ(t – 1)                                            (13) 

 

Where y(t) is the estimated output, θ(t) is the parameter vector, φ(t) is the regression vector, 

v(t) is the uncertainty on the output, k(t) is the Kalman gain, E(t) is the error, λ is a directional 

forgetting factor, P(t) is the covariance matrix, Β is a constant that increases the covariance 

matrix instantly, I is the identity matrix, ω is the forgetting factor (0< ω <1), and u(t) is the 

measured output. It should be noted that the estimates are assumed to be unbiased in RLS. 
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This assumption implies that regression vector and the noise are independent and v(t) is a 

white noise. Forgetting factor and covariance matrix play an important role in the estimation 

quality of a time-varying system. The estimation algorithms are susceptible to estimator 

windup, which stems from the forgetting factor, and faults in the approximation, which might 

be due to large parameters change. Therefore, in this paper, a directional forgetting factor has 

been utilized to prevent the identification process from becoming undependable when the 

system is not constantly excited [46]. Table 4 clarifies how the introduced PEMFC model can 

be fitted in the RLS structure for parameter estimation process.  

Table 4: Description of the parameters of RLS 

RLS parameters Implementation description 

θ(t) [ϒ1, ϒ2, ϒ3, ϒ4, ξ1, ξ2, ξ3, α] 

φ(t) [1, T, Tln(CO2), Tln(i), -i, -iT, -i
2, IGln(1 – βId)] 

y(t) Estimated VFC by RLS 

u(t) Measured VFC from the real PEMFC 

 

One point that needs to be mentioned is that the initialization of the parameters vector is very 

important to achieve realistic outcomes from the identification process in both RLS and RML 

algorithms. In this regard, a preprocessing of data is performed in this paper to avoid 

increasing the computational time or divergence and also get close to realistic results. The 

preprocessing of data is conducted by the Curve Fitting Toolbox™ of MATLAB software. 

This toolbox utilizes the least square methods to fit the data. Fitting requires a parametric 

model which can relate the real data to the predictor data. In this work, the employed fuel cell 

model is linear in coefficients. Therefore, linear least square, which minimizes the summed 

square of the difference between the observed response value and the fitted response value, is 

used to fit the model to experimental data. The utilized experimental data in the preprocessing 

stage comes from the conducted test for obtaining the polarization curves of the fuel cells, 

presented in Figure 2, which is a proper representative of its behavior.  
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4.1 RML algorithm 

On the condition that the noise is related to the regression vector, the model cannot be 

considered as a linear regression due to unobserved data. In this condition, RLS algorithm 

cannot be employed since the model is not a linear regression, and RML algorithm can be 

introduced. RML algorithm holds a striking resemblance to RLS. The main difference here is 

that the disturbance acting on the output of the system (v(t)) is modeled as a moving average 

of a serially uncorrelated white noise sequence. In this case, the unobserved components (e(t), 

e(t – 1), … e(t – r)) are approximated by the residuals, which are the values of the estimation 

error (E(t)). RML algorithm is formulated as below.   

 

y(t) = θ(t)Tφ(t) + v(t)  (14) 

v(t) = e(t) + c1(t)e(t – 1) + … + cr(t)e(t – r)             (15)  

θ(t) = θ(t – 1) + k(t)E(t)                                                                                                          (16) 

k(t) = λ-1P(t – 1) Ψ(t)/(1 + λ-1ΨT(t)P(t – 1)Ψ(t))                                                                     (17) 

Ψ(t) = φ(t)/C(q-1)                       (18) 

P(t) = λ-1P(t – 1) – λ-1k(t)ΨT(t)P(t – 1) + ΒI                                                                           (19) 

λ(t) = ω – (1 – ω/φT(t)P(t – 1)φ(t));   if φT(t)P(t – 1)φ(t) > 0                                   (20) 

λ(t) = 1;                                              if φT(t)P(t – 1)φ(t) = 0                                       (21) 

E(t) = u(t) – φT(t) θ(t – 1)                                                                                                       (22) 

 

Where e is the residuals calculated by the values of error, c is the added parameter for error 

prediction, Ψ(t) is a filter, q-1 is the delayed operator, and C is the estimated polynomial of the 

parameter c (1+c1q
-1+…+ crq

-r). The number of parameter c, which is shown by r in the 

formulas, has been chosen three in this particular case with respect to the conducted trials, and 

it can be increased or decreased in other problems.  

This is the peer reviewed version of the following article: Kandidayeni, M., Macias, A., Amamou, A. A., Boulon, L., & Kelouwani, S. (2018). Comparative Analysis of Two Online Identification Algorithms in a Fuel Cell System.  
Fuel Cells, 18(3), 347-358., which has been published in final form at http://dx.doi.org/10.1002/fuce.201800025. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use 
of Self-Archived Versions.



It should be noted that with respect to the introduced structure for the RML algorithm, which 

contains a model for predicting error, the introduced semi-empirical model should be 

extended as below to consider the error model as well.  

  

VFC = n × (ENernst + Vact + Vohmic + Vcon + c1(t) e(t – 1) + c2(t) e(t – 2) + c3(t) e(t – 3))          (23) 

 

Table 5 shows how the introduced RML algorithm in this section can be coupled to the 

PEMFC model. 

Table 5: Description of the parameters of RML 

RLS parameters Implementation description 

θ(t) [ϒ1, ϒ2, ϒ3, ϒ4, ξ1, ξ2, ξ3, α, c1, c2, c3] 

φ(t) [1, T, Tln(CO2), Tln(i), -i, -iT, -i
2, IGln(1 – βId), e(t – 1), e(t – 2), e(t – 3)] 

y(t) Estimated VFC by RML 

u(t) Measured VFC from the real PEMFC 

C(q-1) (1+c1q
-1+ c2q

-2+c3q
-3) 

 

 

5 Experimental results and discussion 

The performance of the described algorithms has been tested on a developed test bench in the 

Hydrogen Research Institute. In this test bench, as shown in Figure 4, a Horizon H-500 air 

breathing PEMFC is connected to a National Instrument CompactRIO through its controller. 

A programmable DC electronic load is used to request load profiles from the PEMFC. 

According to the manufacturer, the difference between the atmospheric pressure in the 

cathode side and the pressure of the PEMFC in the anode side should be about 50.6 kPa. The 

pressure in the anode side is set to 55.7 kPa. The explained semi-empirical model and 

parameter identification algorithms have been developed in MATLAB and implemented in 

Lab VIEW software via Math Script Module. A current profile is applied to the PEMFCs via 

the load, which is connected to the LabVIEW software and PC via USB connection. The 

measured data (temperature and voltage) from the real PEMFC is transferred to the PC, by 
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means of the CompactRIO, to be used in the implemented model for identification process. 

The communication between the CompactRIO and the PC is via Ethernet connection every 

100 milliseconds. In this regard, the identification algorithms receive the measured data every 

100 milliseconds and identify the parameters of the model at each step. Then the updated 

model is used to plot polarization curve as well as the power-versus-current curve. The 

current correspondent to the maximum power is obtained from the power-versus-current 

profile, and it is requested from the PEMFCs via the load.  

  

Figure 4: Developed test bench in Hydrogen Research Institute. 

This work aims to increase the accuracy of the extracted information, which is maximum 

power herein, from the updated model. Later on, this information extraction basis can be 

integrated into the EMS designs to achieve more realistic results. Two main analyses have 

been performed in this section to clarify the effectiveness of the discussed algorithms and the 

PEMFC model. The first analysis is to compare the performance of the identification 

algorithms, and the second analysis is to show the relevance of the achieved results to real 

physical values. 
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Figure 5 indicates the utilized current profile to test the performance of the identification 

algorithms. This current profile has been created by means of UDDS driving profile which 

represents the city driving condition. To do so, the UDDS driving profile has been used as the 

input of IEEE VTS Motor Vehicles Challenge [47], and the resulting requested current from 

the PEMFC has been scaled within the operating range of the presented PEMFCs in the test 

bench. Since this current profile comes from a driving cycle, it can imitate a real situation that 

may happen to a used fuel cell system in a vehicle. However, the application of this work is 

not just limited to vehicles. The represented current profile, shown in Figure 3, has been 

applied to two described PEMFCs with different levels of degradation.  

 

Figure 5: Applied current profile (a), and corresponded voltage (b), and temperature (c) in the 

test bench. 

Figures 6 and 7 represent the estimated voltage and temperature variation for the Degraded 

and Normal PEMFCs respectively. As is clear in these figures, both of RLS and RML 

algorithms are potentially capable of estimating voltage precisely. It is difficult to form an 

opinion about the performance comparison of the algorithms solely by means of these figures. 
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Figure 6: Estimated output voltage (a), and temperature change (b), of the Degraded PEMFC. 

 

Figure 7: Estimated output voltage (a), and temperature change (b), of the Normal PEMFC. 

Regarding the comparison of the algorithms to one another, the mean square error (MSE) and 

the peak signal to noise ratio (PSNR) have been employed. MSE and PSNR are two error 
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metrics used to compare the estimation quality. PSNR calculates the peak signal-to-noise 

ratio, in decibels, between the two original signal and estimated signal. In this paper, the 

original signal is the measured output voltage of the PEMFC and the estimated signal is the 

PEMFC estimated output voltage by the algorithms. The higher the PSNR, the better the 

quality of the estimation. The MSE represents the cumulative squared error between the 

estimated voltage and the measured voltage. The lower the value of MSE, the lower the error.      

As mentioned earlier, the utilized algorithms in this work have been implemented in 

LabVIEW software for experimental validation. The PEMFC is connected to a National 

Instrument CompactRIO, which provides access to the PEMFC voltage and temperature 

sensors’ measurements. In order to check the robustness of the algorithms, a random noise is 

added to the voltage measurement in the LabVIEW, and the noisy signal is sent to the process 

of identification, which is done by the algorithms. It should be reminded that the purpose of 

identification is to estimate output voltage of the PEMFC and that is why the noise is added to 

the voltage measurement. Figure 8 presents the obtained PSNR values for different cases. 

Four cases, namely zero noise, a random noise with variance of 0.25, a random noise with 

variance of 0.5, and a random noise with variance of 0.75, have been considered in this 

analysis. Zero noise refers to the normal measurement, and the other cases show the addition 

of random noise with different variances to test the robustness of the algorithms. As it is seen 

in Figure 8, in case of normal measured data (zero noise), RLS performs better than RML to 

some extent. However, as the level of noise increases RML algorithm indicates superior 

performance compared to RLS. This result implies that RML algorithm is more robust than 

RLS while confronting some noises in the system.  
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Figure 8: Comparison of the algorithms based on PSNR. 

Figure 9 presents the comparison of the algorithms based on MSE metric for the same 

discussed four cases. The achieved results of MSE analysis is in agreement with the results of 

PSNR, regarding the robustness of the algorithms. It is clear that the value of MSE for RLS is 

marginally lower that RML in normal measured data, and in higher noise levels, the MSE 

value of RML is lower than RLS, which shows its robustness against noise.  

 

Figure 9: Comparison of the algorithms based on MSE. 

Regarding the investigation of the result relevance to the physical meaning, current interrupt 

method, as explained in section 3.1, has been used to obtain a reference range for assessing 

the resistor estimation by algorithms. In fact, current interrupt test, which is an 

electrochemical technique, is used to measure the evolution of resistor with respect to the 

temperature and current. This measurement clarifies the range of the resistor for the whole 

stack and is a helpful tool to check the achieved results by the both algorithms. Figure 10 

shows the estimated values of the Rinternal in the Normal and Degraded PEMFCs, which are 
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within the obtained ranges of the current interrupt test presented in Figure 3. The observed 

evolution in the trend of resistor, particularly between 0 to 100 seconds, is due to the sharp 

rise of current in the used current profile, shown in Figure 5, in this time period. This sudden 

increase in the current also leads to a temperature rise, which affects the resistor. The resistor 

is influenced by not only the current but also the temperature. According to Figure 10, the 

ohmic resistance value in the Degraded PEMFC is more than the Normal PEMFC. 

 

Figure 10: Evolution of the estimated ohmic resistance in the PEMFCs. 

 Table 6 provides information on the average value of the semi-empirical parameters, 

obtained by both of the identification methods. There is not a lot of information about the 

range of the semi-empirical parameters in the literature and even in the few existing 

manuscripts, there is not any explanation about the age and degradation level of the PEMFCs. 

However, the achieved parameters in this manuscript seem to be almost in the same range as 

in Table 2. 

Table 6: The average obtained values of the semi-empirical parameters 

Parameters 
Degraded PEMFC Normal PEMFC 

RLS RML RLS RML 

ϒ1 -1.19 -1.19 -0.91 -0.91 

ϒ2 4.01×10-3 4.01×10-3 2.9×10-3 2.9×10-3 

ϒ3 9.68×10-5 9.53×10-5 7.71×10-5 7.78×10-5 

ϒ4 -9.56×10-5 -1.05×10-4 -1.97×10-4 -1.93×10-4 

α 7.95×10-1 7.95×10-1 9.94×10-1 9.94×10-1 

ξ1 9.94×10-2 9.94×10-2 1.07×10-2 1.07×10-2 

ξ2 -2.92×10-4 -2.92×10-4 -9.90×10-6 -1.00×10-5 

ξ3 -1.22×10-5 -1.22×10-5 8.54×10-5 8.54×10-5 
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c1 - 2.50×10-1 - 2.50×10-1 

c2 - 3.00×10-1 - 3.00×10-1 

c3 - 5.00×10-2 - 5.00×10-2 

 

Figure 11 represents the evolution of the activation region parameters of the Normal PEMFC 

with RLS algorithm. Since the performance of the algorithms has been already discussed over 

the previous figures and the average values of the estimated parameters for both PEMFCs 

have been reported in Table 6, the parameters identified by RLS approach are only shown in 

Figure 11 to give an idea of parameters variation. As is seen in this figure, the parameters are 

time-varying and the small variation of the parameters overtime shows that the selected 

PEMFC model has an acceptable accuracy, otherwise the parameters would fluctuate a lot to 

compensate the lack of accuracy in the model.  

 

Figure 11: The fluctuation of activation region parameters. 

The variation of the concentration region parameter, achieved by RLS, is shown in Figure 12. 

It should be noted that the severity of degradation influence is ambiguous over each specific 
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parameter. However, it can be ensured that in case of disturbance occurrence due to 

degradation, the parameters change to embrace its effect.   

 

Figure 12: The fluctuation of concentration region parameter. 

Figure 13 represents the comparison of the polarization and power curves of Normal and 

Degraded PEMFCs with the estimated ones, obtained by RLS algorithm for zero noise 

condition. It should be noted that the polarization curve changes continuously mainly due to 

the temperature change. As it is seen, maximum power is achieved in the high current region, 

where the concentration part begins. In this regard, by employing the recursive algorithms in 

the parameter estimation of a PEMFC model, the polarization curve and maximum power can 

be obtained at each moment and be used in power splitting or global EMSs.  
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Figure 13: Polarization curve and corresponded power curve of Normal PEMFC (a, c), and 

Degraded PEMFC (b, d). 

Figure 14 compares the polarization curves obtained by the estimated parameters with RML 

and RLS algorithms for the noise level of 0.25. As is clear in Figure 14, the estimated 

polarization curve by RML algorithm is closer to the reference, which comes from the 

experimental data, than RLS. This figure also shows the influence of noise in the polarization 

curve estimation. Looking more closely at Figure 14, it can be concluded that a small change 

in the voltage estimation can cause a noticeable change in the polarization curve estimation. 

The difference between the PSNR values of RML and RLS algorithms, presented in Figure 8, 

for the noise level of 0.25 is not a lot. However, this slight difference causes an obvious 

change in the polarization curve prediction.  

 

Figure 14: The comparison of polarization curves obtained by algorithms 

 

6 Conclusions 

This paper proposes online identification of a multi-input PEMFC model to track the 

performance drifts due to the influence of degradation phenomenon and the operating 
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conditions, which are not considered in the model, over the output voltage of a fuel cell 

system. In this regard, a semi-empirical PEMFC model is selected and two identification 

algorithms, RLS and RML, are utilized to update the chosen model. Various scenarios, four 

noise level cases, and two PEMFCs with different levels of degradation, have been considered 

to test the performance of the algorithms. The main results achieved from the experimental 

implementation and test of the algorithms indicate that both of the algorithms are capable of 

estimating the output voltage to a satisfactory level. However, RML has shown more 

robustness in dealing with noisy measurement data. It is worth reminding that this robustness 

might lead to less expensive sensors and measurement instruments. Moreover, it should be 

noted that the range of alteration in the semi-empirical parameters was acceptable. In future, 

this work can be integrated into the design of global energy management for FCVs. 
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List of Symbols 

Latin Letters 

VFC Output voltage of fuel cell / V 

n Number of cells 

ENernst Cell reversible voltage / V 

Vact Activation voltage drop / V 

Vohmic Ohmic voltage drop / V 

Vcon Concentration voltage drop / V 

T Stack temperature / K 

PH2 Hydrogen partial pressure / Pa 

PO2 Oxygen partial pressure / Pa 

CO2 Oxygen concentration / molcm-3 

i FC operating current / A 

Rinternal Total internal resistance of the fuel cell / Ω 

Id Current density / Acm-2 
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G Dimensionless number  

Y Output 

U Input 

V Noise 

an Output coefficient  

bm Input coefficient  

E Error 

cr Error coefficient  

k Kalman gain 

P Covariance matrix 

E Estimation error 

q-1 Delayed operator 

C Estimated polynomial 

X Regression vector 

I Identity matrix 

 

Greek Letters 

ϒn  Experiential coefficients related to activation loss 

ξn  Parametric coefficients related to ohmic resistance 

Α Semi-empirical parameter related to diffusion mechanism 

Β Inverse of the limiting current density / A-1cm-2 

θ Parameter vector 

Φ Linear regression vector 

φ0 Residual regression vector 

Λ Directional forgetting factor 

Ε Residuals 

Ψ Filter 

Β Constant 

Ω Forgetting factor 
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