125 research outputs found

    Ultrafast magnetization switching by spin-orbit torques

    Full text link
    Spin-orbit torques induced by spin Hall and interfacial effects in heavy metal/ferromagnetic bilayers allow for a switching geometry based on in-plane current injection. Using this geometry, we demonstrate deterministic magnetization reversal by current pulses ranging from 180~ps to ms in Pt/Co/AlOx dots with lateral dimensions of 90~nm. We characterize the switching probability and critical current IcI_c as function of pulse length, amplitude, and external field. Our data evidence two distinct regimes: a short-time intrinsic regime, where IcI_c scales linearly with the inverse of the pulse length, and a long-time thermally assisted regime where IcI_c varies weakly. Both regimes are consistent with magnetization reversal proceeding by nucleation and fast propagation of domains. We find that IcI_c is a factor 3-4 smaller compared to a single domain model and that the incubation time is negligibly small, which is a hallmark feature of spin-orbit torques

    Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures

    Full text link
    Current-induced spin torques are of great interest to manipulate the orientation of nanomagnets without applying external magnetic fields. They find direct application in non-volatile data storage and logic devices, and provide insight into fundamental processes related to the interdependence between charge and spin transport. Recent demonstrations of magnetization switching induced by in-plane current injection in ferromagnetic heterostructures have drawn attention to a class of spin torques based on orbital-to-spin momentum transfer, which is alternative to pure spin transfer torque (STT) between noncollinear magnetic layers and amenable to more diversified device functions. Due to the limited number of studies, however, there is still no consensus on the symmetry, magnitude, and origin of spin-orbit torques (SOTs). Here we report on the quantitative vector measurement of SOTs in Pt/Co/AlO trilayers using harmonic analysis of the anomalous and planar Hall effects as a function of the applied current and magnetization direction. We provide an all-purpose scheme to measure the amplitude and direction of SOTs for any arbitrary orientation of the magnetization, including corrections due to the interplay of Hall and thermoelectric effects. Based on general space and time inversion symmetry arguments, we show that asymmetric heterostructures allow for two different SOTs having odd and even behavior with respect to magnetization reversal. Our results reveal a scenario that goes beyond established models of the Rashba and spin Hall contributions to SOTs. The even SOT is STT-like but stronger than expected from the spin Hall effect in Pt. The odd SOT is composed of a constant field-like term and an additional component, which is strongly anisotropic and does not correspond to a simple Rashba field.Comment: Supplementary Informations follows Paper in the .pdf fil

    Chirality-induced asymmetric magnetic nucleation in Pt/Co/AlOx ultrathin microstructures

    Get PDF
    The nucleation of reversed magnetic domains in Pt/Co/AlOx_{x} microstructures with perpendicular anisotropy was studied experimentally in the presence of an in-plane magnetic field. For large enough in-plane field, nucleation was observed preferentially at an edge of the sample normal to this field. The position at which nucleation takes place was observed to depend in a chiral way on the initial magnetization and applied field directions. An explanation of these results is proposed, based on the existence of a sizable Dzyaloshinskii-Moriya interaction in this sample. Another consequence of this interaction is that the energy of domain walls can become negative for in-plane fields smaller than the effective anisotropy field.Comment: Published version, Physical Review Letters 113, 047203 (2014

    Direct Observation of Massless Domain Wall Dynamics in Nanostripes with Perpendicular Magnetic Anisotropy

    Get PDF
    Domain wall motion induced by nanosecond current pulses in nanostripes with perpendicular magnetic anisotropy (Pt/Co/AlOx_x) is shown to exhibit negligible inertia. Time-resolved magnetic microscopy during current pulses reveals that the domain walls start moving, with a constant speed, as soon as the current reaches a constant amplitude, and no or little motion takes place after the end of the pulse. The very low 'mass' of these domain walls is attributed to the combination of their narrow width and high damping parameter α\alpha. Such a small inertia should allow accurate control of domain wall motion, by tuning the duration and amplitude of the current pulses

    Chiral damping of magnetic domain walls

    Full text link
    Structural symmetry breaking in magnetic materials is responsible for a variety of outstanding physical phenomena. Examples range from the existence of multiferroics, to current induced spin orbit torques (SOT) and the formation of topological magnetic structures. In this letter we bring into light a novel effect of the structural inversion asymmetry (SIA): a chiral damping mechanism. This phenomenon is evidenced by measuring the field driven domain wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The difficulty in evidencing the chiral damping is that the ensuing DW dynamics exhibit identical spatial symmetry to those expected from the Dzyaloshinskii-Moriya interaction (DMI). Despite this fundamental resemblance, the two scenarios are differentiated by their time reversal properties: while DMI is a conservative effect that can be modeled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing to distinguish the physical mechanism. The observation of the chiral damping, not only enriches the spectrum of physical phenomena engendered by the SIA, but since it can coexists with DMI it is essential for conceiving DW and skyrmion devices

    Kinematic differences between left- and right-handed cricket fast bowlers during the bowling action

    Get PDF
    Background: Despite differences between left- and right-handed athletes in other sports, minimal evidence exists regarding biomechanical similarities and differences between left- and right-handed cricket fast bowlers performing an equivalent task. Objectives: This study aimed to compare the kinematics between left and right-handed fast bowlers performing an equivalent task (i.e. bowling ‘over the wicket’ to a batter of the same handedness as the bowler). Methods: Full body, three-dimensional kinematic data for six left-handed and 20 right-handed adolescent, male, fast bowlers were collected using the Xsens inertial measurement system. Time-normalised joint and segment angle time histories from back foot contact to follow-through ground contacts were compared between groups via statistical parametric mapping. Whole movement and subphase durations were also compared. Results: Left-handed players displayed significantly more trunk flexion from 49%-56% of the total movement (ball release occurred at 54%; p = 0.037) and had shorter back foot contact durations on average (0.153 vs 0.177 s; p = 0.036) compared to right-handed players. Conclusion: Left- and right-handed bowlers displayed similar sagittal plane kinematics but appeared to use non-sagittal plane movements differently around the time of ball release. The kinematic differences identified in this study can inform future research investigating the effect of hand dominance on bowling performance and injury risk

    Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers

    Get PDF
    We present a comprehensive study of the current-induced spin-orbit torques in perpendicularly magnetized Ta/CoFeB/MgO layers. The samples were annealed in steps up to 300 degrees C and characterized using x-ray absorption spectroscopy, transmission electron microscopy, resistivity, and Hall effect measurements. By performing adiabatic harmonic Hall voltage measurements, we show that the transverse (field-like) and longitudinal (antidamping-like) spin-orbit torques are composed of constant and magnetization-dependent contributions, both of which vary strongly with annealing. Such variations correlate with changes of the saturation magnetization and magnetic anisotropy and are assigned to chemical and structural modifications of the layers. The relative variation of the constant and anisotropic torque terms as a function of annealing temperature is opposite for the field-like and antidamping torques. Measurements of the switching probability using sub-{\mu}s current pulses show that the critical current increases with the magnetic anisotropy of the layers, whereas the switching efficiency, measured as the ratio of magnetic anisotropy energy and pulse energy, decreases. The optimal annealing temperature to achieve maximum magnetic anisotropy, saturation magnetization, and switching efficiency is determined to be between 240 degrees and 270 degrees C
    corecore