97 research outputs found

    Mortality and suppression of progeny production of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) in seven different grains treated with an enhanced diatomaceous earth formulation

    Get PDF
    DEBBM, an enhanced diatomaceous earth (DE) formulation consisting of a mixture of DE and the plant extract bitterbarkomycin, was applied to seven different grains (wheat, barley, oats, rye, triticale, paddy rice and maize) at two dose rates 50 ppm and 150 ppm. Unsexed, 7d old adults of Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae) were exposed to the DEBBM treated commodities and their mortality was assessed after 7d and 14d of exposure at 25 oC and 65% r.h. Furthermore, progeny production of the tested species per treated commodity was also assessed. Sitophilus oryzae appeared to be more susceptible than T. confusum to DEBBM. Performance of DEBBM was better in barley, wheat and oats compared to the remainder of the tested commodities. DEBBM performed better in rye and triticale than in paddy rice against both species although in many cases, significant differences among these grains were not recorded. Despite that DEBBM reached its highest efficacy levels on barley, wheat, and oats it did not suppress progeny production of the treated species in any of the grains. A significant reduction in progeny production of the treated species was recorded in the DEBBM treated grains in comparison with the untreated ones. This reduction in progeny production was expressed more vigorously to S. oryzae rather than T. confusum. In commodities with high DEBBM performance such as barley, oats or wheat, > 9-fold less progeny of S. oryzae were recorded at 150 ppm of DEBBM than in the untreated commodities. Although significantly less progeny of T. confusum were recorded in DEBBM treated grains than untreated grains, progeny suppression of this species was neither dose nor commodity dependant. Keywords: Diatomaceous earth, Bitterbarkomycin, Tribolium, Sitophilus, Mortality, Commodit

    Decoration of plasmonic Mg nanoparticles by partial galvanic replacement.

    Get PDF
    Plasmonic structures have attracted much interest in science and engineering disciplines, exploring a myriad of potential applications owing to their strong light-matter interactions. Recently, the plasmonic concentration of energy in subwavelength volumes has been used to initiate chemical reactions, for instance by combining plasmonic materials with catalytic metals. In this work, we demonstrate that plasmonic nanoparticles of earth-abundant Mg can undergo galvanic replacement in a nonaqueous solvent to produce decorated structures. This method yields bimetallic architectures where partially oxidized 200-300 nm Mg nanoplates and nanorods support many smaller Au, Ag, Pd, or Fe nanoparticles, with potential for a stepwise process introducing multiple decoration compositions on a single Mg particle. We investigated this mechanism by electron-beam imaging and local composition mapping with energy-dispersive X-ray spectroscopy as well as, at the ensemble level, by inductively coupled plasma mass spectrometry. High-resolution scanning transmission electron microscopy further supported the bimetallic nature of the particles and provided details of the interface geometry, which includes a Mg oxide separation layer between Mg and the other metal. Depending on the composition of the metallic decorations, strong plasmonic optical signals characteristic of plasmon resonances were observed in the bulk with ultraviolet-visible spectrometry and at the single particle level with darkfield scattering. These novel bimetallic and multimetallic designs open up an exciting array of applications where one or multiple plasmonic structures could interact in the near-field of earth-abundant Mg and couple with catalytic nanoparticles for applications in sensing and plasmon-assisted catalysis.Support for this project was provided by the EU Framework Programme for Research and Innovation Horizon 2020 (Starting Grant SPECs 804523). J.A. wishes to acknowledge financial support from Natural Sciences and Engineering Research Council of Canada and “Fonds de Recherche QuĂ©bec – Nature et Technologies” postdoctoral fellowships (BP and B3X programs). C.B. is thankful for funding from the Engineering and Physical Sciences Research Council (Standard Research Studentship (DTP) EP/R513180/1), and E.R.H. for support from the EPSRC NanoDTC Cambridge (EP/L015978/1). S.M.C. acknowledges support from the Henslow Research Fellowship at Girton College, Cambridge. We acknowledge access and support in the use of the electron Physical Sciences Imaging Centre (MG21980) at the Diamond Light Source, U.K

    Influence of genetic factors on toluene diisocyanate-related symptoms: evidence from a cross-sectional study

    Get PDF
    Background: Toluene diisocyanate (TDI) is a highly reactive compound used in the production of, e. g., polyurethane foams and paints. TDI is known to cause respiratory symptoms and diseases. Because TDI causes symptoms in only a fraction of exposed workers, genetic factors may play a key role in disease susceptibility. Methods: Workers (N = 132) exposed to TDI and a non-exposed group ( N = 114) were analyzed for genotype (metabolising genes: CYP1A1*2A, CYP1A1*2B, GSTM1*O, GSTM3*B, GSTP1 1105V, GSTP1 A114V, GSTT1*O, MPO -463, NAT1*3, *4, *10, *11, *14, *15, NAT2*5, *6, *7, SULT1A1 R213H; immune-related genes: CCL5 -403, HLA-DQB1* 05, TNF-308, TNF-863) and symptoms of the eyes, upper and lower airways ( based on structured interviews). Results: For three polymorphisms: CYP1A1*2A, CYP1A1*2B, and TNF -308 there was a pattern consistent with interaction between genotype and TDI exposure status for the majority of symptoms investigated, although it did reach statistical significance only for some symptoms: among TDI-exposed workers, the CYP1A1 variant carriers had increased risk (CYP1A1*2A and eye symptoms: variant carriers OR 2.0 95% CI 0.68-6.1, p-value for interaction 0.048; CYP1A1*2B and wheeze: IV carriers OR = 12, 1.4-110, p-value for interaction 0.057). TDI-exposed individuals with TNF-308 A were protected against the majority of symptoms, but it did not reach statistical significance. In the non-exposed group, however, TNF -308 A carriers showed higher risk of the majority of symptoms ( eye symptoms: variant carriers OR = 2.8, 1.1-7.1, p-value for interaction 0.12; dry cough OR = 2.2, 0.69-7.2, p-value for interaction 0.036). Individuals with SULT1A1 213H had reduced risk both in the exposed and non-exposed groups. Other polymorphisms, showed associations to certain symptoms: among TDI-exposed, NAT1*10 carriers had a higher risk of eye symptoms and CCL5 -403 AG+AA as well as HLA-DQB1 *05 carriers displayed increased risk of symptoms of the lower airways. GSTM1, GSTM3 and GSTP1 only displayed effects on symptoms of the lower airways in the non-exposed group. Conclusion: Specific gene-TDI interactions for symptoms of the eyes and lower airways appear to exist. The results suggest different mechanisms for TDI- and non- TDI-related symptoms of the eyes and lower airways

    Pharmacogenetic allele nomenclature: International workgroup recommendations for test result reporting

    Get PDF
    This manuscript provides nomenclature recommendations developed by an international workgroup to increase transparency and standardization of pharmacogenetic (PGx) result reporting. Presently, sequence variants identified by PGx tests are described using different nomenclature systems. In addition, PGx analysis may detect different sets of variants for each gene, which can affect interpretation of results. This practice has caused confusion and may thereby impede the adoption of clinical PGx testing. Standardization is critical to move PGx forward

    Multiple Advantageous Amino Acid Variants in the NAT2 Gene in Human Populations

    Get PDF
    Background: Genetic variation at NAT2 has been long recognized as the cause of differential ability to metabolize a wide variety of drugs of therapeutic use. Here, we explore the pattern of genetic variation in 12 human populations that significantly extend the geographic range and resolution of previous surveys, to test the hypothesis that different dietary regimens and lifestyles may explain inter-population differences in NAT2 variation. Methodology/Principal Findings: The entire coding region was resequenced in 98 subjects and six polymorphic positions were genotyped in 150 additional subjects. A single previously undescribed variant was found (34T>C; 12Y>H). Several aspects of the data do not fit the expectations of a neutral model, as assessed by coalescent simulations. Tajima's D is positive in all populations, indicating an excess of intermediate alleles. The level of between-population differentiation is low, and is mainly accounted for by the proportion of fast vs. slow acetylators. However, haplotype frequencies significantly differ across groups of populations with different subsistence. Conclusions/Significance: Data on the structure of haplotypes and their frequencies are compatible with a model in which slow-causing variants were present in widely dispersed populations before major shifts to pastoralism and/or agriculture. In this model, slow-causing mutations gained a selective advantage in populations shifting from hunting-gathering to pastoralism/agriculture. We suggest the diminished dietary availability of folates resulting from the nutritional shift, as the possible cause of the fitness increase associated to haplotypes carrying mutations that reduce enzymatic activity. © 2008 Luca et al

    Effects of Single Nucleotide Polymorphisms on Human N-Acetyltransferase 2 Structure and Dynamics by Molecular Dynamics Simulation

    Get PDF
    BACKGROUND: Arylamine N-acetyltransferase 2 (NAT2) is an important catalytic enzyme that metabolizes the carcinogenic arylamines, hydrazine drugs and chemicals. This enzyme is highly polymorphic in different human populations. Several polymorphisms of NAT2, including the single amino acid substitutions R64Q, I114T, D122N, L137F, Q145P, R197Q, and G286E, are classified as slow acetylators, whereas the wild-type NAT2 is classified as a fast acetylator. The slow acetylators are often associated with drug toxicity and efficacy as well as cancer susceptibility. The biological functions of these 7 mutations have previously been characterized, but the structural basis behind the reduced catalytic activity and reduced protein level is not clear. METHODOLOGY/PRINCIPAL FINDINGS: We performed multiple molecular dynamics simulations of these mutants as well as NAT2 to investigate the structural and dynamical effects throughout the protein structure, specifically the catalytic triad, cofactor binding site, and the substrate binding pocket. None of these mutations induced unfolding; instead, their effects were confined to the inter-domain, domain 3 and 17-residue insert region, where the flexibility was significantly reduced relative to the wild-type. Structural effects of these mutations propagate through space and cause a change in catalytic triad conformation, cofactor binding site, substrate binding pocket size/shape and electrostatic potential. CONCLUSIONS/SIGNIFICANCE: Our results showed that the dynamical properties of all the mutant structures, especially in inter-domain, domain 3 and 17-residue insert region were affected in the same manner. Similarly, the electrostatic potential of all the mutants were altered and also the functionally important regions such as catalytic triad, cofactor binding site, and substrate binding pocket adopted different orientation and/or conformation relative to the wild-type that may affect the functions of the mutants. Overall, our study may provide the structural basis for reduced catalytic activity and protein level, as was experimentally observed for these polymorphisms

    Influence of Dietary Oil Content and Conjugated Linoleic Acid (CLA) on Lipid Metabolism Enzyme Activities and Gene Expression in Tissues of Atlantic Salmon (Salmo salar L.)

    Get PDF
    The overall objective is to test the hypothesis that conjugated linoleic acid (CLA) has beneficial effects in Atlantic salmon through affecting lipid and fatty acid metabolism. The specific aims of the present study were to determine the effects of CLA on some key pathways of fatty acid metabolism including fatty acid oxidation and highly unsaturated fatty acid (HUFA) synthesis. Salmon smolts were fed diets containing two levels of fish oil (low, ~18% and high, ~34%) containing three levels of CLA (a 1:1 mixture of 9-cis,trans-11 and trans-10,cis-12 at 0, 1 and 2% of diet) for 3 months. The effects of dietary CLA on HUFA synthesis and ÎČ-oxidation were measured and the expression of key genes in the fatty acid oxidation and HUFA synthesis pathways, and potentially important transcription factors, peroxisome proliferators activated receptors (PPARs), determined in selected tissues. Liver HUFA synthesis and desaturase gene expression was increased by dietary CLA and decreased by high dietary oil content. Carnitine palmitoyltransferase-I (CPT-I) activity and gene expression were generally increased by CLA in muscle tissues although dietary oil content had relatively little effect. In general CPT-I activity or gene expression was not correlated with ÎČ-oxidation. Dietary CLA tended to increase PPARα and ÎČ gene expression in both liver and muscle tissues, and PPARÎł in liver. In summary, gene expression and activity of the fatty acid pathways were altered in response to dietary CLA and/or oil content, with data suggesting that PPARs are also regulated in response to CLA. Correlations were observed between dietary CLA, liver HUFA synthesis and desaturase gene expression, and liver PPARα expression, and also between dietary CLA, CPT-I expression and activity, and PPARα expression in muscle tissues. In conclusion, this study suggests that dietary CLA has effects on fatty acid metabolism in Atlantic salmon and on PPAR transcription factors. However, further work is required to assess the potential of CLA as a dietary supplement, and the role of PPARs in the regulation of lipid metabolism in fish

    Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement by vegetable oil: a liver transcriptomic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expansion of aquaculture is seriously limited by reductions in fish oil (FO) supply for aquafeeds. Terrestrial alternatives such as vegetable oils (VO) have been investigated and recently a strategy combining genetic selection with changes in diet formulations has been proposed to meet growing demands for aquaculture products. This study investigates the influence of genotype on transcriptomic responses to sustainable feeds in Atlantic salmon.</p> <p>Results</p> <p>A microarray analysis was performed to investigate the liver transcriptome of two family groups selected according to their estimated breeding values (EBVs) for flesh lipid content, 'Lean' or 'Fat', fed diets containing either FO or a VO blend. Diet principally affected metabolism genes, mainly of lipid and carbohydrate, followed by immune response genes. Genotype had a much lower impact on metabolism-related genes and affected mostly signalling pathways. Replacement of dietary FO by VO caused an up-regulation of long-chain polyunsaturated fatty acid biosynthesis, but there was a clear genotype effect as fatty acyl elongase (elovl2) was only up-regulated and desaturases (Δ5 fad and Δ6 fad) showed a higher magnitude of response in Lean fish, which was reflected in liver fatty acid composition. Fatty acid synthase (FAS) was also up-regulated by VO and the effect was independent of genotype. Genetic background of the fish clearly affected regulation of lipid metabolism, as PPARα and PPARÎČ were down-regulated by the VO diet only in Lean fish, while in Fat salmon SREBP-1 expression was up-regulated by VO. In addition, all three genes had a lower expression in the Lean family group than in the Fat, when fed VO. Differences in muscle adiposity between family groups may have been caused by higher levels of hepatic fatty acid and glycerophospholipid synthesis in the Fat fish, as indicated by the expression of FAS, 1-acyl-sn-glycerol-3-phosphate acyltransferase and lipid phosphate phosphohydrolase 2.</p> <p>Conclusions</p> <p>This study has identified metabolic pathways and key regulators that may respond differently to alternative plant-based feeds depending on genotype. Further studies are required but data suggest that it will be possible to identify families better adapted to alternative diet formulations that might be appropriate for future genetic selection programmes.</p
    • 

    corecore