10 research outputs found

    Genome Sequences of Three Strains of the Pseudomonas aeruginosa PA7 Clade

    No full text
    International audienceDraft genome sequences of three P. aeruginosa strains from the PA7 clade are presented here. Their lengths are 6.36 (EML528), 6.44 (EML545), and 6.33 Mb (EML548). Comparisons with the PA7 genome showed 5,113 conserved coding sequences (CDSs), and significant numbers of strain-specific CDSs. Their analysis will improve our understanding of this highly divergent clade

    Norepinephrine and Serotonin Can Modulate the Behavior of the Probiotic Enterococcus faecium NCIMB10415 towards the Host: Is a Putative Surface Sensor Involved?

    No full text
    The human gut microbiota has co-evolved with humans by exchanging bidirectional signals. This study aims at deepening the knowledge of this crucial relationship by analyzing phenotypic and interactive responses of the probiotic Enterococcus faecium NCIMB10415 (E. faecium SF68) to the top-down signals norepinephrine (NE) and serotonin (5HT), two neuroactive molecules abundant in the gut. We treated E. faecium NCIMB10415 with 100 µM NE and 50 µM 5HT and tested its ability to form static biofilm (Confocal Laser Scanning Microscopy), adhere to the Caco-2/TC7 monolayer, affect the epithelial barrier function (Transepithelial Electrical Resistance) and human dendritic cells (DC) maturation, differentiation, and cytokines production. Finally, we evaluated the presence of a putative hormone sensor through in silico (whole genome sequence and protein modelling) and in vitro (Micro-Scale Thermophoresis) analyses. The hormone treatments increase biofilm formation and adhesion on Caco-2/TC7, as well as the epithelial barrier function. No differences concerning DC differentiation and maturation between stimulated and control bacteria were detected, while an enhanced TNF-α production was observed in NE-treated bacteria. Investigations on the sensor support the hypothesis that a two-component system on the bacterial surface can sense 5HT and NE. Overall, the data demonstrate that E. faecium NCIMB10415 can sense both NE and 5HT and respond accordingly

    Lagooning of wastewaters favors dissemination of clinically relevant Pseudomonas aeruginosa.

    No full text
    International audienceThe significance of wastewater treatment lagoons (WWTLs) as point sources of clinically relevant Pseudomonas aeruginosa that can disseminate through rural and peri-urban catchments was investigated. A panel of P. aeruginosa strains collected over three years from WWTLs and community-acquired infections was compared by pulsed field gel electrophoresis (PFGE) DNA fingerprinting and multilocus sequence typing (MLST). Forty-four distantly related PFGE profiles and four clonal complexes were found among the WWTL strains analyzed. Some genotypes were repeatedly detected from different parts of WWTLs, including the influent, suggesting an ability to migrate and persist over time. MLST showed all investigated lineages to match sequence types described in other countries and strains from major clinical clones such as PA14 of ST253 and "C" of ST17 were observed. Some of these genotypes matched isolates from community-acquired infections recorded in the WWTL geographic area. Most WWTL strains harbored the main P. aeruginosa virulence genes; 13% harbored exoU-encoded cytoxins, but on at least six different genomic islands, with some of these showing signs of genomic instability. P. aeruginosa appeared to be highly successful opportunistic colonizers of WWTLs. Lagooning of wastewaters was found to favor dissemination of clinically relevant P. aeruginosa among peri-urban watersheds

    Genomic rearrangements and functional diversification of lecA and lecB lectin-coding regions impacting the efficacy of glycomimetics directed against Pseudomonas aeruginosa

    Get PDF
    LecA and LecB tetrameric lectins take part in oligosaccharide-mediated adhesion-processes of Pseudomonas aeruginosa. Glycomimetics have been designed to block these interactions. The great versatility of P. aeruginosa suggests that the range of application of these glycomimetics could be restricted to genotypes with particular lectin types. The likelihood of having genomic and genetic changes impacting LecA and LecB interactions with glycomimetics such as galactosylated and fucosylated calix[4]arene was investigated over a collection of strains from the main clades of P. aeruginosa. Lectin types were defined, and their ligand specificities were inferred. These analyses showed a loss of lecA among the PA7 clade. Genomic changes impacting lec loci were thus assessed using strains of this clade, and by making comparisons with the PAO1 genome. The lecA regions were found challenged by phage attacks and PAGI-2 (genomic island) integrations. A prophage was linked to the loss of lecA. The lecB regions were found less impacted by such rearrangements but greater lecB than lecA genetic divergences were recorded. Sixteen combinations of LecA and LecB types were observed. Amino acid variations were mapped on PAO1 crystal structures. Most significant changes were observed on LecBPA7, and found close to the fucose binding site. Glycan array analyses were performed with purified LecBPA7. LecBPA7 was found less specific for fucosylated oligosaccharides than LecBPAO1, with a preference for H type 2 rather than type 1, and Lewisa rather than Lewisx. Comparison of the crystal structures of LecBPA7 and LecBPAO1 in complex with Lewisa showed these changes in specificity to have resulted from a modification of the water network between the lectin, galactose and GlcNAc residues. Incidence of these modifications on the interactions with calix[4]arene glycomimetics at the cell level was investigated. An aggregation test was used to establish the efficacy of these ligands. Great variations in the responses were observed. Glycomimetics directed against LecB yielded the highest numbers of aggregates for strains from all clades. The use of a PAO1lecB strain confirmed a role of LecB in this aggregation phenotype. Fucosylated calix[4]arene showed the greatest potential for a use in the prevention of P. aeruginosa infections

    Impact of PGPR inoculation on root morphological traits and root exudation in rapeseed and camelina: interactions with heat stress

    No full text
    International audienceRoot exudation is involved in the recruitment of beneficial microorganisms by trophic relationships and/or signalling pathways. Among beneficial microorganisms, Plant Growth-Promoting Rhizobacteria (PGPR) are known to improve plant growth and stress resistance. These interactions are of particular importance for species that do not interact with mycorrhizal fungi, such as rapeseed (Brassica napus L.) and camelina (Camelina sativa (L.) Crantz). However, heat stress is known to have a quantitative and qualitative impact on root exudation and could affect the interactions between plants and PGPR. We aimed to analyse the effects of PGPR inoculation on root morphology and exudation in rapeseed and camelina at the reproductive stage. The modulation of the effects of these interactions under heat stress was also investigated. The plants were inoculated twice at the reproductive stage with two different Pseudomonas species and were exposed to heat stress after the second inoculation. In non-stressing conditions, after bacterial inoculation, rapeseed and camelina exhibited two contrasting behaviours in C root allocation. While rapeseed plants seemed to suffer from the interactions with the bacteria, camelina plants appeared to control the relationship with the PGPR by modifying the composition of their root exudates. Under heat stress, the plant-PGPR interaction was unbalanced for rapeseed, for which the C allocation strategy is mainly driven by the C cost from the bacteria. Alternatively, camelina plants prioritized C allocation for their own above-ground development. This work opens up new perspectives for understanding plant-PGPR interactions, especially in an abiotic stress context

    Genomic Diversity of Campylobacter lari Group Isolates from Europe and Australia in a One Health Context

    No full text
    Members of the Campylobacter lari group are causative agents of human gastroenteritis and are frequently found in shellfish, marine waters, shorebirds, and marine mammals. Within a One Health context, we used comparative genomics to characterize isolates from a diverse range of sources and geographical locations within Europe and Australia and assess possible transmission of food, animal, and environmental isolates to the human host. A total of 158 C. lari isolates from Australia, Denmark, France, and Germany, which included 82 isolates from human stool and blood, 12 from food, 14 from domestic animal, 19 from waterbirds, and 31 from the environment were analyzed. Genome-wide analysis of the genetic diversity, virulence, and antimicrobial resistance (AMR) traits was carried-out. Most of the isolates belonged to C. lari subsp. lari (Cll; 98, 62.0%), while C. lari subsp. concheus and C. lari urease-positive thermotolerant Campylobacter (UPTC) were represented by 12 (7.6%) and 15 (9.5%) isolates, respectively. Furthermore, 33 (20.9%) isolates were not assigned a subspecies and were thus attributed to distant Campylobacter spp. clades. Whole-genome sequence-derived multilocus sequence typing (MLST) and core-genome MLST (cgMLST) analyses revealed a high genetic diversity with 97 sequence types (STs), including 60 novel STs and 14 cgMLST clusters (≀10 allele differences), respectively. The most prevalent STs were ST-21, ST-70, ST-24, and ST-58 (accounting for 13.3%, 4.4%, 3.8%, and 3.2% of isolates, respectively). A high prevalence of the 125 examined virulence-related loci (from 76.8 to 98.4% per isolate) was observed, especially in Cll isolates, suggesting a probable human pathogenicity of these strains. IMPORTANCE Currently, relatedness between bacterial isolates impacting human health is easily monitored by molecular typing methods. These approaches rely on discrete loci or whole-genome sequence (WGS) analyses. Campylobacter lari is an emergent human pathogen isolated from diverse ecological niches, including fecal material from humans and animals, aquatic environments, and seafood. The presence of C. lari in such diverse sources underlines the importance of adopting an integrated One Health approach in studying C. lari population structure for conducting epidemiological risk assessment. This retrospective study presents a comparative genomics analysis of C. lari isolates retrieved from two different continents (Europe and Australia) and from different sources (human, domestic animals, waterbirds, food, and environment). It was designed to improve knowledge regarding C. lari ecology and pathogenicity, important for developing effective surveillance and disease prevention strategies

    Campylobacter armoricus sp. nov., a novel member of the Campylobacter lari group isolated from surface water and stools from humans with enteric infection

    No full text
    During a study on the prevalence and diversity of members of the genus Campylobacter in a shellfish-harvesting area and its catchment in Brittany, France, six urease-positive isolates of members of the genus Campylobacter were recovered from surface water samples, as well as three isolates from stools of humans displaying enteric infection in the same period. These strains were initially identified as members of the Campylobacter lari group by MALDI-TOF mass spectrometry and placed into a distinct group in the genus Campylobacter, following atpA gene sequence analysis based on whole-genome sequencing data. This taxonomic position was confirmed by phylogenetic analysis of the 16S rRNA, rpoB and hsp60 (groEL) loci, and an analysis of the core genome that provided an improved phylogenetic resolution. The average nucleotide identity between the representative strain CA656T (CCUG 73571T=CIP 111675T) and the type strain of the most closely related species Campylobacter ornithocola WBE38T was 88.5 %. The strains were found to be microaerobic and anaerobic, motile, non-spore-forming, Gram-stain-negative, spiral-shaped bacteria that exhibit catalase, oxidase and urease activities but not nitrate reduction. This study demonstrates clearly that the nine isolates represent a novel species within the C. lari group, for which the name Campylobacter armoricus is proposed. Here, we present phenotypic and morphological features of the nine strains and the description of their genome sequences. The proposed type strain CA656T has a 1.589 Mbp chromosome with a DNA G+C content of 28.5 mol% and encodes 1588 predicted coding sequences, 38 tRNAs, and 3 rRNA operons.

    Antiadhesive properties of glycoclusters against Pseudomonas aeruginosa lung infection

    No full text
    Pseudomonas aeruginosa lung infections are a major cause of death in cystic fibrosis and hospitalized patients. Treating these infections is becoming difficult due to the emergence of conventional antimicrobial multiresistance. While monosaccharides have proved beneficial against such bacterial lung infection, the design of several multivalent glycosylated macromolecules has been shown to be also beneficial on biofilm dispersion. In this study, calix[4]arene-based glycoclusters functionalized with galactosides or fucosides have been synthesized. The characterization of their inhibitory properties on Pseudomonas aeruginosa aggregation, biofilm formation, adhesion on epithelial cells, and destruction of alveolar tissues were performed. The antiadhesive properties of the designed glycoclusters were demonstrated through several in vitro bioassays. An in vivo mouse model of lung infection provided an almost complete protection against Pseudomonas aeruginosa with the designed glycoclusters

    Antiadhesive Properties of Glycoclusters against <i>Pseudomonas aeruginosa</i> Lung Infection

    No full text
    <i>Pseudomonas aeruginosa</i> lung infections are a major cause of death in cystic fibrosis and hospitalized patients. Treating these infections is becoming difficult due to the emergence of conventional antimicrobial multiresistance. While monosaccharides have proved beneficial against such bacterial lung infection, the design of several multivalent glycosylated macromolecules has been shown to be also beneficial on biofilm dispersion. In this study, calix[4]­arene-based glycoclusters functionalized with galactosides or fucosides have been synthesized. The characterization of their inhibitory properties on <i>Pseudomonas aeruginosa</i> aggregation, biofilm formation, adhesion on epithelial cells, and destruction of alveolar tissues were performed. The antiadhesive properties of the designed glycoclusters were demonstrated through several in vitro bioassays. An in vivo mouse model of lung infection provided an almost complete protection against <i>Pseudomonas aeruginosa</i> with the designed glycoclusters
    corecore