190 research outputs found

    Optical Stark Effect and Dressed Excitonic States in a Mn-doped Quantum Dot

    Full text link
    We report on the observation of spin dependent optically dressed states and optical Stark effect on an individual Mn spin in a semiconductor quantum dot. The vacuum-to-exciton or the exciton-to-biexciton transitions in a Mn-doped quantum dot are optically dressed by a strong laser field and the resulting spectral signature is measured in photoluminescence. We demonstrate that the energy of any spin state of a Mn atom can be independently tuned using the optical Stark effect induced by a control laser. High resolution spectroscopy reveals a power, polarization and detuning dependent Autler-Townes splitting of each optical transition of the Mn-doped quantum dot. This experiment demonstrates a complete optical resonant control of the exciton-Mn system

    Optical control of the spin state of two Mn atoms in a quantum dot

    Get PDF
    We report on the optical spectroscopy of the spin of two magnetic atoms (Mn) embedded in an individual quantum dot interacting with either a single electron, a single exciton and single trion. As a result of their interaction to a common entity, the Mn spins become correlated. The dynamics of this process is probed by time resolved spectroscopy, that permits to determine the optical orientation time in the range of a few tens of nsns. In addition, we show that the energy of the collective spin states of the two Mn atoms can be tuned through the optical Stark effect induced by a resonant laser field

    Electron-nuclei spin dynamics in II-VI semiconductor quantum dots

    Full text link
    We report on the dynamics of optically induced nuclear spin polarization in individual CdTe/ZnTe quantum dots loaded with one electron by modulation doping. The fine structure of the hot trion (charged exciton X−X^- with an electron in the PP-shell) is identified in photoluminescence excitation spectra. A negative polarisation rate of the photoluminescence, optical pumping of the resident electron and the built-up of dynamic nuclear spin polarisation (DNSP) are observed in time-resolved optical pumping experiments when the quantum dot is excited at higher energy than the hot trion triplet state. The time and magnetic field dependence of the polarisation rate of the X−X^- emission allows to probe the dynamics of formation of the DNSP in the optical pumping regime. We demonstrate using time-resolved measurements that the creation of a DNSP at B=0T efficiently prevents longitudinal spin relaxation of the electron caused by fluctuations of the nuclear spin bath. The DNSP is built in the microsecond range at high excitation intensity. A relaxation time of the DNSP in about 10 microseconds is observed at B=0TB=0T and significantly increases under a magnetic field of a few milli-Tesla. We discuss mechanisms responsible for the fast initialisation and relaxation of the diluted nuclear spins in this system

    Relationship Between LIBS Ablation and Pit Volume for Geologic Samples: Applications for the In Situ Absolute Geochronology

    Get PDF
    These first results demonstrate that LIBS spectra can be an interesting tool to estimate the ablated volume. When the ablated volume is bigger than 9.10(exp 6) cubic micrometers, this method has less than 10% of uncertainties. Far enough to be directly implemented in the KArLE experiment protocol. Nevertheless, depending on the samples and their mean grain size, the difficulty to have homogeneous spectra will increase with the ablated volume. Several K-Ar dating studies based on this approach will be implemented. After that, the results will be shown and discussed

    Control of defect-mediated tunneling barrier heights in ultrathin MgO films

    Full text link
    The impact of oxygen vacancies on local tunneling properties across rf-sputtered MgO thin films was investigated by optical absorption spectroscopy and conducting atomic force microscopy. Adding O2_2 to the Ar plasma during MgO growth alters the oxygen defect populations, leading to improved local tunneling characteristics such as a lower density of current hotspots and a lower tunnel current amplitude. We discuss a defect-based potential landscape across ultrathin MgO barriers.Comment: 4 pages, 4 figure

    Study of molecular spin-crossover complex Fe(phen)2(NCS)2 thin films

    Full text link
    We report on the growth by evaporation under high vacuum of high-quality thin films of Fe(phen)2(NCS)2 (phen=1,10-phenanthroline) that maintain the expected electronic structure down to a thickness of 10 nm and that exhibit a temperature-driven spin transition. We have investigated the current-voltage characteristics of a device based on such films. From the space charge-limited current regime, we deduce a mobility of 6.5x10-6 cm2/V?s that is similar to the low-range mobility measured on the widely studied tris(8-hydroxyquinoline)aluminium organic semiconductor. This work paves the way for multifunctional molecular devices based on spin-crossover complexes

    Effectiveness of neem seed oil (Azadirachta indica A. Juss: Meliaceae) on Syllepte derogata Fabricius, Lepidoptera: Pyralidae

    Get PDF
    Objective: Synthetic insecticides have long been used for cotton protection,  resulting in pest resistance, toxicity and environmental pollution. Biopesticides have been suggested as alternatives to synthetic pesticides. Both field and laboratory experiments were conducted to evaluate the effectiveness of neem oil in controlling Syllepte derogata (Fabricius), a cotton phyllophagous pest.Methodology and Results: In the field trials, effect of neem oil was compared to that of conventional insecticides; while in the laboratory direct larval immersion and leaf dip method using EMA SUPER 56DC and neem oil were tested. Decrease in damage by S. derogata for about 63 and 86% was recorded with neem oil and synthetic insecticides. In the laboratory, the mortality of S. derogata after 24 hours exposure to neem oil and Ema Super was significantly higher (2.5 to 100%) than that of the control. The mortality of larvae of S. derogata was positively correlated with the concentration of neem oil and exposure time. Lethal Concentration (LC50) after 24 hours exposure of larvae was respectively 4.03 104 ml/l and 51.13 ml/l forleaf dipping method and larval immersion.Conclusion and application of results: Overall, these results showed the efficacy of neem oil in controlling S. derogata, as a biopesticide. This oil could also  constitute a successful alternative to synthetic pesticides. However, the  effectiveness of neem oil appeared to be weakened by the rapid degradation of the active substances, azadirachtin in particular. Indeed, azadirachtin, the main active ingredient of neem is photo and heat labile. It easily degrades under high solar radiations and high temperatures, hence the need for stabilization.Keywords: Phyllophagous pest, integrated pest management, leaf-dipping method, larval immersion, Lethal Concentration

    Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: effects of irradiation and identification with a type of amorphous carbon

    Get PDF
    Aims.Interplanetary dust particle (IDP) matter probably evolved under irradiation in the interstellar medium (ISM) and the solar nebula. Currently IDPs are exposed to irradiation in the Solar System. Here the effects of UV and proton processing on IDP matter are studied experimentally. The structure and chemical composition of the bulk of carbon matter in IDPs is characterized. Methods: .Several IDPs were further irradiated in the laboratory using ultraviolet (UV) photons and protons in order to study the effects of such processing. By means of infrared and Raman spectroscopy, IDPs were also compared to different materials that serve as analogs of carbon grains in the dense and diffuse ISM. Results: .The carbonaceous fraction of IDPs is dehydrogenated by exposure to hard UV photons or 1 MeV protons. On the other hand, proton irradiation at lower energies (20 keV) leads to an efficient hydrogenation of the carbonaceous IDP matter. The dominant type of carbon in IDPs, observed with Raman and infrared spectroscopy, is found to be either a form of amorphous carbon (a-C) or hydrogenated amorphous carbon (a-C:H), depending on the IDP, consisting of aromatic units with an average domain size of 1.35 nm (5-6 rings in diameter), linked by aliphatic chains. Conclusions: .The D- and 15N-enrichments associated to an aliphatic component in some IDPs are probably the result of chemical reactions at cold temperatures. It is proposed that the amorphous carbon in IDPs was formed by energetic processing (UV photons and cosmic rays) of icy grains, maybe during the dense cloud stage, and more likely on the surface of the disk during the T Tauri phase of our Sun. This would explain the isotopic anomalies and morphology of IDPs. Partial annealing, 300-400°C, is required to convert an organic residue from ice photoprocessing into the amorphous carbon with low heteroatom content found in IDPs. Such annealing might have occurred as the particles approached the Sun and/or during atmospheric entry heating
    • 

    corecore