27 research outputs found

    Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting inimosugars or by modification of their chemical structure

    Get PDF
    The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS). The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (P<0.001). The combination of ivy and stevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39%) and lower butyrate (-32%) and lower ammonia concentration (-64%) than the extracts incubated separately. HBS caused a decrease in butyrate (-45%) and an increase in propionate (+43%) molar proportions. However, the decrease in ammonia concentration (-42%) observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (P<0.05). It was concluded that ivy saponins with stevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an iminosugar-rich stevia extract and/or HBS should be evaluated to determine their antiprotozoal effect in vivopublishersversionPeer reviewe

    Antiprotozoal effect of saponins in the rumen can be enhanced by chemical modifications in their structure

    Get PDF
    The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to the sapogenin by rumen microorganisms they become inactive. We postulated that the substitution of the sugar moiety of the saponin with small polar residues would produce sapogen-like analogs which might be resistant to degradation in the rumen as they would not be enzymatically cleaved, allowing the antiprotozoal effect to persist over time. In this study, we used an acute assay based on the ability of protozoa to break down [14C] leucine-labeled Streptococcus bovis and a longer term assay based on protozoal motility over 24 h to evaluate both the antiprotozoal effect and the stability of this effect with fifteen hederagenin bis-esters esterified with two identical groups, and five cholesterol and cholic acid based derivatives carrying one to three succinate residues. The acute antiprotozoal effect of hederagenin derivatives was more pronounced than that of cholesterol and cholic acid derivatives. Modifications in the structure of hederagenin, cholesterol, and cholic acid derivatives resulted in compounds with different biological activities in terms of acute effect and stability, although those which were highly toxic to protozoa were not always the most stable over time. Most of the hederagenin bis-esters, and in particular hederagenin bis-succinate (TSB24), hederagenin bis-betainate dichloride (TSB37) and hederagenin bis-adipate (TSB47) had a persistent effect against rumen protozoa in vitro, shifting the fermentation pattern toward higher propionate and lower butyrate. These chemically modified triterpenes could potentially be used in ruminant diets as an effective defaunation agent to, ultimately, increase nitrogen utilization, decrease methane emissions, and enhance animal production. Further trials in vivo or in long term rumen simulators are now needed to confirm the in vitro observations presented.This work was financed by the Innovate UK project “Ivy for ruminants” Ref: 101091. CJN acknowledges the support of the Biotechnology and Biological Sciences Research Council, UK via grant number BB/J0013/1

    Flukicidal effects of abietane diterpenoid derived analogues against the food borne pathogen Fasciola hepatica.

    Get PDF
    Control of liver fluke infections remains a significant challenge in the livestock sector due to widespread distribution of drug resistant parasite populations. In particular, increasing prevalence and economic losses due to infection with Fasciola hepatica is a direct result of drug resistance to the gold standard flukicide, triclabendazole. Sustainable control of this significant zoonotic pathogen, therefore, urgently requires the identification of new anthelmintics. Plants represent a source of molecules with potential flukicidal effects and, amongst their secondary metabolites, the diterpenoid abietic acids can be isolated in large quantities. In this study, nineteen (19) chemically modified abietic acid analogues (MC_X) were first evaluated for their anthelmintic activities against F. hepatica newly excysted juveniles (NEJs, from the laboratory-derived Italian strain); from this, 6 analogues were secondly evaluated for their anthelmintic activities against adult wild strain flukes. One analogue, MC010, was progressed further against 8-week immature- and 12-week mature Italian strain flukes. Here, MC010 demonstrated moderate activity against both of these intra-mammalian fluke stages (with an adult fluke EC50 = 12.97 µM at 72 h post culture). Overt mammalian cell toxicity of MC010 was inferred from the Madin-Darby bovine kidney (MDBK) cell line (CC50 = 17.52 µM at 24 h post culture) and demonstrated that medicinal chemistry improvements are necessary before abietic acid analogues could be considered as potential anthelmintics against liver fluke pathogen

    Novel olanzapine analogues presenting a reduced H1 receptor affinity and retained 5HT2A/D2 binding affinity ratio

    Get PDF
    Background Olanzapine is an atypical antipsychotic drug with high clinical efficacy, but which can cause severe weight gain and metabolic disorders in treated patients. Blockade of the histamine 1 (H1) receptors is believed to play a crucial role in olanzapine induced weight gain, whereas the therapeutic effects of this drug are mainly attributed to its favourable serotoninergic 2A and dopamine 2 (5HT2A/D2) receptor binding affinity ratios. Results We have synthesized novel olanzapine analogues 8a and 8b together with the already known derivative 8c and we have examined their respective in vitro affinities for the 5HT2A, D2, and H1 receptors. Conclusions We suggest that thienobenzodiazepines 8b and 8c with lower binding affinity for the H1 receptors, but similar 5HT2A/D2 receptor binding affinity ratios to those of olanzapine. These compounds may offer a better pharmacological profile than olanzapine for treating patients with schizophrenia

    Concise synthesis of (-)-steviamine and analogues and their glycosidase inhibitory activities

    Get PDF
    A concise synthesis of (−)-steviamine is reported along with the synthesis of its analogues 10-nor-steviamine, 10-nor-ent-steviamine and 5-epi-ent-steviamine. These compounds were tested against twelve glycosidases (at 143 μg mL−1 concentrations) and were found to have in general poor inhibitory activity against most enzymes. The 10-nor analogues however, showed 50–54% inhibition of α-L-rhamnosidase from Penicillium decumbens while one of these, 10-nor-steviamine, showed 51% inhibition of N-acetyl-β-D-glucosaminidase (from Jack bean) at the same concentration (760 μM)

    Studies towards the synthesis of polyhydroxylated pyrrolidine alkaloids isolated from Broussonetia kazinoki (moraceae)

    No full text
    The syntheses of L-AB1, L-DMDP, and the novel compounds, (−)-phenethyl-L-AB1, (−)-10′-deoxobroussonetine C, (−)-10′-deoxobroussonetine E, (−)-1′-epi-10′-deoxobroussonetine E, and (−)-(6S)-12′-hydroxydodecylmoranoline are reported. These syntheses start from D-xylose employing the Petasis borono-Mannich reaction to stereoselectively introduce the amino group, followed by a chemo- and regioselective O-mesylation to deliver the fully functionalized pyrrolidine moiety after intramolecular SN2-cyclisation. The synthesis of the latter targeted compound involved a ring expansion process of a prolinol moiety to a piperidine derivative under Mitsunobu reaction conditions. An attempted synthesis of desired ent-broussonetine C was unsuccesful due to formation of an unexpected tetrahydrofuran derivative in the final stage of the synthesis. The glycosidase inhibitory activities of four of the new target compounds against a panel of ten glycosidaes is also presented

    Pelagic photoferrotrophy and iron cycling in a modern ferruginous basin

    Get PDF
    8 páginas, 3 figurasIron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth’s early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth’s early biosphere providing energy to drive microbial growth and evolution over billions of years. Yet, photoferrotrophic activity has remained largely elusive on the modern Earth, leaving models for early biological production untested and imperative ecological context for the evolution of life missing. Here, we show that an active community of pelagic photoferrotrophs comprises up to 30% of the total microbial community in illuminated ferruginous waters of Kabuno Bay (KB), East Africa (DR Congo). These photoferrotrophs produce oxidized iron {Fe(III)} and biomass, and support a diverse pelagic microbial community including heterotrophic Fe(III)-reducers, sulfate reducers, fermenters and methanogens. At modest light levels, rates of photoferrotrophy in KB exceed those predicted for early Earth primary production, and are sufficient to generate Earth’s largest sedimentary iron ore deposits. Fe cycling, however, is efficient, and complex microbial community interactions likely regulate Fe(III) and organic matter export from the photic zone.This work was partially supported by Belgian (FNRS 2.4.515.11 and BELSPO SD/AR/02A contracts), Danish (grant no. DNRF53 to DEC), and European (grant no. ERC-StG 240002, for stable isotope measurements) funds. AVB is a senior research associate at the FRS-FNRS. SAC was supported by the Agouron institute.Peer reviewe

    Improving the antiprotozoal effect of saponins in the rumen by combination with glycosidase inhibiting iminosugars or by modification of their chemical structure

    No full text
    The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to sapogenins by rumen microorganisms they become inactive. We hypothesised that the combination of saponins with glycosidase-inhibiting iminosugars might potentially increase the effectiveness of saponins over time by preventing their deglycosylation in the rumen. Alternatively, modifying the structure of the saponins by substituting the sugar moiety with other small polar residues might maintain their activity as the sugar substitute would not be enzymatically cleaved. The aim of this in vitro study was to evaluate the acute antiprotozoal effect and the stability of this effect over a 24 h incubation period using ivy saponins, a stevia extract rich in iminosugars, ivy saponins with stevia extract, and a chemically modified ivy saponin, hederagenin bis-succinate (HBS). The effects on fermentation parameters and rumen bacterial communities were also studied. Ivy saponins with stevia and HBS had a greater antiprotozoal effect than ivy saponins, and this effect was maintained after 24 h of incubation (P<0.001). The combination of ivy and stevia extracts was more effective in shifting the fermentation pattern towards higher propionate (+39%) and lower butyrate (-32%) and lower ammonia concentration (-64%) than the extracts incubated separately. HBS caused a decrease in butyrate (-45%) and an increase in propionate (+43%) molar proportions. However, the decrease in ammonia concentration (-42%) observed in the presence of HBS was less than that caused by ivy saponins, either alone or with stevia. Whereas HBS and stevia impacted on bacterial population in terms of community structure, only HBS had an effect in terms of biodiversity (P<0.05). It was concluded that ivy saponins with stevia and the modified saponin HBS had a strong antiprotozoal effect, although they differed in their effects on fermentation parameters and bacteria communities. Ivy saponins combined with an iminosugar-rich stevia extract and/or HBS should be evaluated to determine their antiprotozoal effect in vivo
    corecore