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Abstract 22 

 23 

The antiprotozoal effect of saponins is transitory, as when saponins are deglycosylated to the 24 

sapogenin by rumen microorganisms they become inactive. We postulated that the 25 

substitution of the sugar moiety of the saponin with small polar residues would produce 26 

sapogen-like analogues which might be resistant to degradation in the rumen as they would 27 

not be enzymatically cleaved, allowing the antiprotozoal effect to persist over time. In this 28 

study we used an acute assay based on the ability of protozoa to break down [14C] leucine-29 

labelled Streptococcus bovis and a longer term assay based on protozoal motility over 24 h to 30 

evaluate both the antiprotozoal effect and the stability of this effect with fifteen hederagenin 31 

bis-esters esterified with two identical groups, and five cholesterol and cholic acid based 32 

derivatives carrying one to three succinate residues. The acute antiprotozoal effect of 33 

hederagenin derivatives was more pronounced than that of cholesterol and cholic acid 34 

derivatives. Modifications in the structure of hederagenin, cholesterol, and cholic acid 35 

derivatives resulted in compounds with different biological activities in terms of acute effect 36 

and stability, although those which were highly toxic to protozoa were not always the most 37 

stable over time. Most of the hederagenin bis-esters, and in particular hederagenin bis-38 

sucinate (TSB24), hederagenin bis-betainate dichloride (TSB37) and hederagenin bis-adipate 39 

(TSB47) had a persistent effect against rumen protozoa in vitro, shifting the fermentation 40 

pattern towards higher propionate and lower butyrate. These chemically modified triterpenes 41 

could potentially be used in ruminant diets as an effective defaunation agent to, ultimately, 42 

increase nitrogen utilization, decrease methane emissions, and enhance animal production. 43 

Further trials in vivo or in long term rumen simulators are now needed to confirm the in vitro 44 

observations presented.  45 

Keywords: antiprotozoal activity, Hedera helix, hederagenin, saponins, stability 46 
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1. Introduction 47 

 48 

The manipulation of the rumen microbial ecosystem using plant secondary 49 

compounds has proved to be a useful strategy to increase the efficiency of feed utilization by 50 

ruminants (Bodas et al., 2012; Wanapat et al., 2012). Plants or their extracts with high 51 

concentrations of saponins appear to have the potential to act as natural antiprotozoal agents 52 

(Patra and Saxena, 2009a). Protozoa are a normal but non-vital part of the rumen microbiome 53 

and can contribute up to 50% of the bio-mass in the rumen (Williams and Coleman, 1992).  54 

Because of their predation activity, rumen protozoa have been shown to be highly active in 55 

the turnover of bacterial protein in the rumen (Wallace and McPherson, 1987). Moreover, 56 

protozoa have been proven to harbour an active population of methanogenic archaea both on 57 

their external and internal surfaces (Finlay et al., 1994; Newbold et al., 1995).  A recent meta-58 

analysis has shown that the elimination of protozoa from the rumen could increase microbial 59 

protein supply to the host by up to 30% and reduce methane production by up to 11% 60 

(Newbold et al., 2015). 61 

Saponins are plant secondary metabolites which consist of one or more sugar moieties 62 

glycosidically linked to a less polar aglycone or sapogenin (Francis et al., 2002). The sugar 63 

portion is generally made up of common monosaccharides, such as D-glucose, D-galactose, 64 

D-glucuronic acid, D-xylose, L-rhamnose, and various pentoses which are glycosidically 65 

linked as linear or branched oligosaccharides to the sapogenin. Saponins can be broadly 66 

classified based on their sapogenin structure as either triterpenoid or steroid saponins (Wina 67 

et al., 2005). The presence of different substituents in the sapogenin such as hydroxyl, 68 

hydroxymethyl, carboxyl and acyl groups, as well as differences in the composition, linkage 69 

and number of sugar chains accounts for significant structural variation and thus their 70 

bioactivity (Patra and Saxena, 2009b; Podolak et al., 2010).  71 
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Saponins can form irreversible complexes with cholesterol in the protozoal cell 72 

membrane causing cell rupture and lysis (Wina et al., 2005). Rumen protozoal species seems 73 

to differ in their sensitivity to saponins due to differences in the sterol composition of their 74 

cellular membranes leading to the suggestion that feeding saponins might lead to partial 75 

defaunation (Patra and Saxena, 2009a). The antiprotozoal effect of saponins is, however, 76 

transitory as when saponins are deglycosylated by rumen microorganisms to the sapogenin 77 

they become inactive (Newbold et al., 1997; Patra and Saxena, 2009a) which represents a 78 

challenge to their practical application in ruminant nutrition. We hypothesized that the 79 

substitution of the sugar moiety of the saponin with small polar residues would produce 80 

sapogen-like analogues which might be resistant to degradation in the rumen as they would 81 

not be enzymatically cleaved, allowing the antiprotozoal effect to persist over time. The aim 82 

of this study was to evaluate both the acute anti-protozoal action and the stability of the 83 

antiprotozoal effect of chemically synthesised hederagenin, cholesterol, and cholic acid 84 

derivatives in vitro.  85 

 86 

2. Material and Methods 87 

 88 

 2.1. Hederagenin, cholesterol and cholic acid derivatives 89 

 90 

Ripe ivy (Hedera helix) fruits were collected from several locations around Bangor 91 

(44.8036° N, 68.7703° W, UK), dried at 50oC for two days and milled. Ivy fruit meal (3.79 92 

kg) was extracted with ethanol (15 L) for 6 h, leading to a crude extract (541 g) comprising 93 

triglycerides, saponins, oligosaccharides and pigments (anthocyanins). The crude extract was 94 

then washed with petroleum ether (3 x 500 mL) and dried overnight at 50oC under vacuum, 95 

obtaining a fine powder (368 g) which comprised mainly mixed saponins and 96 
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oligosaccharides. Then an additional extraction with n-butanol was carried out, obtaining a 97 

refined extract comprising saponins (15% DM). Hederagenin, the aglycone part of the 98 

saponins, was obtained via hydrolysis of ivy fruit refined extract in ethanolic solution with 99 

aqueous HCl.  100 

Hederoside B, the major saponin present in the fruit extract, was obtained by gravity 101 

chromatography (Fluorochem, silica gel 40-60, CHCl3/MeOH/H2O; 90:9:1 → 75:22.5:2.5) of 102 

the defatted fruit extract. Fractions containing hederoside B were concentrated and 103 

subsequently washed with methanol. Nuclear magnetic resonance data (pyridine-d5) of the 104 

obtained compound was in agreement with that reported in the literature (Kizu et al., 1985). 105 

Hederagenin bis-esters derivatives (two identical ester moieties at position 3 and 23; 106 

Figure 1) were synthesised from the aglycone hederagenin produced above as described in 107 

patent application PCT/EP2016062383 (Ramos-Morales et al., 2016).  108 

Cholesterol and cholic acid derivatives (Figure 2) were synthesised following the 109 

same methods for esterification of organic molecules, described in patent 110 

PCT/EP2016062383 (Ramos-Morales et al., 2016). Hederagenin, cholesterol, and cholic acid 111 

derivatives were produced by DSM Nutritional Products and Bangor University.  112 

The purity of the synthesised compounds was established by quantitative nuclear 113 

magnetic resonance (qNMR) spectroscopy using a Bruker Ultrashielded 400 spectrometer 114 

(Bruker Corporation, Coventry, UK) confirming purities of 80 - 99% for most derivatives 115 

except TSB37 and TSB38 which had a purity of 66% and 58%, respectively. It should be 116 

noted that the antiprotozoal activity of compounds TSB37 and TSB38 may be either over or 117 

indeed underestimated due to the impurities present. 118 

 119 

2.2. Measurement of protozoal activity 120 

 121 
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The effect of hederagenin, cholesterol, and cholic acid derivatives on protozoal activity 122 

was measured in vitro as the breakdown of [14C] labelled bacteria by rumen protozoa as 123 

described by Wallace and McPherson (1987). Isotope-labelled bacteria were obtained by 124 

growing Streptococcus bovis in Wallace and McPherson media (Wallace and McPherson, 125 

1987) containing [14C] leucine (1.89 µCi/7.5 mL tube) as the sole nitrogen source, for 24 h. 126 

Cultures were centrifuged (3,000g, 15 min), supernatant discarded and pellets re-suspended 127 

in 7 mL of simplex type salt solution (STS; Williams and Coleman, 1992) containing non-128 

labelled leucine (12C-leucine, 5 mM). This process was repeated three times to prevent re-129 

incorporation of released [14C] leucine by bacteria. The labelled bacterial suspension was 130 

sampled to determine its radioactivity and then it was used as the substrate in the incubations 131 

with rumen fluid.  132 

Rumen digesta was obtained from four rumen-cannulated Holstein-Frisian cows (4 133 

replicates), fed at maintenance level (diet composed of perennial ryegrass hay and 134 

concentrate at 67:33 on DM basis).  Animal procedures were carried out in accordance with 135 

the Animal Scientific Procedures Act 1986 and protocols were approved by the Aberystwyth 136 

University Ethical Committee. Rumen digesta was obtained before the morning feeding and 137 

strained through two layers of muslin and diluted with STS (1:1). Diluted rumen fluid (7.5 138 

mL) was then incubated with labelled bacteria (0.5 mL) in tubes containing no additive 139 

(control) or 0.05, 0.1, 0.5 or 1 g/L of the modified triterpenes or steroids; hederoside B, a 140 

natural saponin isolated from ivy fruit, was also incubated at 0.05, 0.1, 0.5 and 1 g/L.  141 

Hederagenin bis-sulfate disodium salt (TSB38), cholesteryl succinate (TSB39) and 142 

lithocholic acid succinate (TSB42) were dissolved in dimethyl sulfoxide (DMSO) at 1% of 143 

the incubation volume. The rest of the derivatives and Hederoside B were solubilized in 144 

ethanol at 1% of the incubation volume as it has been shown that such concentration of 145 

ethanol in rumen fluid should not impair fermentation (Morgavi et al., 2004; Wallace et al., 146 
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2007). Two control treatments with 1% of either DMSO or ethanol were also included in the 147 

experimental design. Incubations were carried out at 39ºC under a stream of CO2 and tubes 148 

were sampled at time 0 and at 1 h intervals up to 5 h using a syringe with a 19 gauge needle. 149 

Samples (0.5 mL) were acidified (by adding 125 µL of 25% (wt/vol) trichloroacetic acid and 150 

centrifuged (13,000  g for 5 min). Supernatant (200 µL), was diluted with 2 mL of 151 

scintillation fluid to determine the radioactivity released by liquid-scintillation spectrometry 152 

(Hidex 300 SL, Lablogic Systems Ltd, Broomhill, UK). Bacterial breakdown at each 153 

incubation time was expressed as the percentage of the acid-soluble radioactivity released 154 

relative to the total radioactivity present in the initial labelled bacteria (Wallace and 155 

McPherson, 1987). 156 

 157 

2.3. In vitro batch cultures 158 

 159 

The initial protozoal population in the inoculum used in the incubations was 160 

quantified by optical microscope using the procedure described by Dehority (1993) and 161 

adapted by de la Fuente et al. (2006). Within the total population (5.34 log cells/mL), 65% 162 

were Entodinium, 8% Epidinium, 21% Diplodinium, 3% Isotricha and 3% Dasytricha.  163 

To estimate the stability of the antiprotozoal effect and measure the influence of the 164 

modified triterpene and steroids on fermentation parameters, strained rumen fluid from each 165 

cow was diluted 1:2 in artificial saliva solution (Menke and Steingass, 1988). Aliquots (30 166 

mL) of the diluted strained rumen fluid were added anaerobically to 120 mL serum bottles 167 

(Sigma-Aldrich Ltd, Dorset, UK) containing 0.3 g of diet composed of ryegrass hay and 168 

barley (40:60), previously ground to pass through a 1-mm2 mesh screen. Treatments 169 

consisted of control incubations (0.3 g of diet only), with either ethanol or DMSO added at 170 

1%, and incubations with the synthesised compounds (diluted in ethanol or DMSO, as 171 
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previously described) at 0.5 or 1 g/L of the incubation. To compare the antiprotozoal effect of 172 

the synthesised compounds against that of a natural saponin from ivy, hederoside B 173 

(dissolved in ethanol) was incubated at 1 g/L. Bottles were incubated at 39 ºC under CO2 174 

receiving a gentle mix before every sampling time. Samples at different time points (0, 4, 8 175 

and 24 h) were collected for visual assessment of protozoa motility. Ciliate protozoa motility 176 

was assessed in 30 µL of sample against a common scale when examined at low 177 

magnification (x 100) using light microscopy. This evaluation was conducted in less than 1 178 

min/sample to avoid the cell damage originated by the oxygen and temperature exposure. A 179 

score between 0 (no whole protozoa evident) and 5 (all genera active) was given according to 180 

the scale described by Newbold (2010).  Fermentation pattern, in terms of pH and VFA was 181 

determined after 24 h of the incubation. A subsample (4 mL) was diluted with 1 mL of 182 

deproteinising solution (200 mL/L orthophosphoric acid containing 20 mmol/L of 2-183 

ethylbutyric acid as an internal standard) for the determination of VFA using gas 184 

chromatography (Stewart and Duncan, 1985). 185 

 186 

2.4. Calculations and statistical analysis 187 

 188 

A simple linear regression was conducted to model the relationship between the 189 

percentage of radioactivity released (relative to the 14C-bacterial inoculum) and the time 190 

(from 0 h to 5 h), as well as its correlation coefficient. The slope of this trend-line indicated 191 

the bacterial degradation rate (as % h-1) by the rumen protozoa and ultimately their activity. 192 

Trend line slopes as well as fermentation parameters were analysed statistically by 193 

randomized block ANOVA, with individual cows as a blocking term. Inhibition of protozoa 194 

activity (% with respect to the control) was analysed using ANOVA with treatment, dose and 195 
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their interaction as fixed effects and cow as blocking term. When significant effects were 196 

detected across the different doses, means were compared by Fisher’s unprotected LSD test.  197 

Protozoal motility was analysed as a Repeated Measures Design, with treatment as 198 

main factor and incubation time as subject factor. A stability index, to estimate the 199 

persistence of the saponin effect over time, was calculated as the percentage of the motility at 200 

8 h that remained at 24 h. Interaction between treatment and time as a measure of differential 201 

temporal dynamics between treatments was also considered. Differences were declared 202 

significant at P<0.05 and considered as tendencies towards significance at P<0.10. Genstat 203 

15th Edition (VSN International, Hemel Hempstead, UK) was used.  204 

 205 

3. Results  206 

 207 

3.1. Acute anti-protozoal activity 208 

 209 

The amount of bacteria degraded by protozoa increased linearly (R2 > 0.99) over the 5 210 

h of incubation with both control treatments (with ethanol or with DMSO). For each 211 

derivative, the rate of bacterial degradation at different doses as compared with the control is 212 

shown in supplemental Table S1. The inhibition of protozoa activity (Table 1) was 213 

significantly different between compounds and doses (P<0.001). Derivatives TSB44, TSB45, 214 

TSB46, TSB47, TSB52 and TSB42 were more effective in inhibiting protozoa activity than 215 

hederoside B, the major ivy saponin. Among the cholesterol and cholic acid derivatives, 216 

TSB39, TSB40 and TSB43 were less effective against protozoa than the natural saponin 217 

(P<0.001).  218 

 219 

3.2. Stability of the antiprotozoal effect and effect on fermentation parameters  220 

Provisional



 

 221 

Based on the observed effects of the synthesised compounds on bacterial breakdown 222 

by protozoa, the two highest doses of these derivatives (0.5 and 1 g/L) and hederoside B at 1 223 

g/L, were tested over 24 h in in vitro incubations. Protozoa motility over time was assessed 224 

and fermentation parameters were determined after 24 h of incubation. Due to the number of 225 

compounds tested, the experiment was carried out in different batches and hence the slightly 226 

different values for fermentation parameters between control incubations. To overcome this 227 

issue, we have compared the effects of each compound against the control run with the same 228 

batch of rumen fluid. 229 

Cell motility, measured as an index of protozoa viability, remained unaltered (score of 230 

4.8) over the 24 h incubation period in control incubations with ethanol or DMSO (Figures 3 231 

and 4). The effect of hederagenin derivatives when added at 0.5 g/L or 1 g/L is shown in 232 

Figures 3a and 3b, respectively. Although, 1 g/L of hederoside B decreased protozoa motility 233 

at 4 and 8 h of the incubation (with scores of 3.88 and 3.20, respectively), there was a strong 234 

treatment x time interaction (P=0.05), and protozoal motility recovered afterwards (reaching 235 

a score of 4.26 at 24 h), suggesting the expected degradation of the saponin during the 236 

incubation. Some of the derivatives, TSB45 and TSB46, showed the same effect as the 237 

natural saponin, initially decreasing protozoa motility but with motility recovering after 24 h 238 

(treatment x time interaction, P<0.05). Other derivatives, TSB24, TSB47, and TSB52, added 239 

at 1 g/L, however, resulted in a greater decrease in protozoa activity over time (P<0.001; 240 

scores of around 3; no motility or activity evident) with no sign of recovery in motility. 241 

Indeed, vacuoles were visible at 24 h suggesting protozoal death (scores of 2.15-2.9).  Only 242 

few of the hederagenin derivatives (TSB33, TSB34, TSB38 and TSB44) did not show an 243 

effect on protozoa motility (P>0.05) at any of the concentrations tested. Cholesterol and 244 

cholic acid derivatives did not seem to be effective in reducing protozoa motility over time as 245 
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shown in Figure 4. Only TSB42 when added at 1 g/L showed a slight decrease in protozoa 246 

motility after 8 and 24 h of incubation (treatment x time interaction, P=0.017; Figure 4b). A 247 

stability index, to estimate the persistence of the saponin effect over time, was calculated as 248 

the percentage of the motility at 8 h that remained at 24 h (Figure 5). Whereas the compounds 249 

located above the origin on the y-axis were stable (persistent effect on protozoal motility at 250 

24 h; e.g. TS24, TSB37, TSB47), those below the origin on the y-axis showed a loss of effect 251 

on protozoal motility (recovery of motility after 24 h; e.g. TSB35, TSB46, hederoside B). 252 

The derivatives close to or on the origin of the y-axis (e.g. TSB50, TSB51) correspond to 253 

those compounds that were less effective against protozoa (scores of about 4.5 at 8 h) but 254 

with an effect that was maintained at 24 h.  255 

Neither the natural saponin, hederoside B, nor the modified triterpenes or steroids 256 

caused a decrease in pH (P>0.05; Table 2); indeed, pH was slightly greater in the presence of 257 

TSB35 and TSB37 at 0.5 and 1 g/L (P<0.001) in comparison to the control. Similarly, no 258 

effect on the concentration of total VFA was observed in incubations with hederoside B or 259 

with most of the derivatives (P>0.05; Table 3). Only TSB35 and TSB36 caused a reduction in 260 

the concentration of VFA (P<0.05) when added at 0.5 and 1 g/L. Almost all treatments 261 

caused shifts in the molar proportions of VFA towards lower butyrate and higher propionate 262 

(P<0.05), to different extents depending on the compound (Tables 5 and 6). Also, some of the 263 

derivatives decreased the molar proportion of acetate (Table 4; P<0.05).  264 

The natural saponin, hederoside B, decreased acetate and butyrate molar proportions 265 

by 8 and 18%, respectively, whereas it increased that of propionate by 35%, in comparison to 266 

the control. The greatest effect was observed with TSB35 (hederagenin bis-glutarate), TSB37 267 

(hederagenin bis-betainate dichloride) and TSB47 (hederagenin bis-apidate) which, when 268 

added at 1 g/L, decreased the molar proportion of acetate and butyrate by 11-13.5% and 35.5-269 

52.7%, respectively, with an increase in propionate of 64.5-84.2%. Cholesteryl succinate 270 
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(TSB39) and cholic tri-succinate (TSB41) did not have any effect on the molar proportions of 271 

VFA. Cholic succinate (TSB40) caused only a slight decrease in butyrate (P=0.013) at 1 g/L, 272 

as compared to the control. TSB42 and TSB43 also resulted in decreases in acetate and 273 

butyrate and increases in propionate although to a lesser extent than those caused by 274 

hederoside B. Molar proportions of branched-chain VFA (BCVFA, i.e. isobutyrate and 275 

isovalerate) decreased (P<0.05) in incubations with TSB24 (-13%) and TSB38 (-16%) at 1 276 

g/L and TSB50, TSB51, TSB52 and TSB58 at 0.5 and 1 g/L (decreases of 22-24% at 1 g/L; 277 

Table 7). TSB43, however, resulted in an increase (P=0.044) in BCVFA when added at 1 g/L 278 

(+54%; Table 7). This was mainly due to changes in isovalerate rather than isobutyrate 279 

(Supplemental Tables S2 and S3). 280 

 281 

4. Discussion 282 

 283 

The biological activity of saponins depends not only on the type of aglycone but also 284 

on the sugar composition and arrangement (Wina et al., 2006). The haemolytic action of 285 

saponins is believed to be the result of the affinity of the aglycone moiety for membrane 286 

sterols, particularly cholesterol with which they form insoluble complexes. It has been shown 287 

that monodesmosidic saponins (a single sugar chain) were generally more active than 288 

bidesmosidic ones (two sugar chains) (Voutquenne et al., 2002). A further study (Chwalek et 289 

al., 2006) testing different hederagenin diglycosides concluded that even the substitution of a 290 

monosaccharide with another monosaccharide within the sugar chain may change biological 291 

activity of saponins. As far as we know, no studies on the correlation between the haemolytic 292 

activity and antiprotozoal activity or on the relationship between saponin structure and 293 

antiprotozoal activity in the rumen have been carried out.  294 

Provisional



 

Although the antiprotozoal effect of saponins has been consistently shown in in vitro 295 

studies (Wina et al, 2005), it was also found to be transient (Newbold et al., 1997; 296 

Teferedegne et al., 1999). This transient nature has been associated to the degradation of 297 

saponins, i.e. the cleavage of the glycosidic bonds towards the aglycone leaving the inactive 298 

sapogenin behind, by rumen bacteria rather than to the ability of rumen protozoa to become 299 

resistant (Newbold et al., 1997). Makkar and Becker (1997) reported the disappearance of 300 

saponins from quillaja over time when incubated with buffered rumen fluid, with a reduction 301 

of 50% after 12 h and by 100% at 24 h of the incubation.  In the present study, we 302 

hypothesized that the substitution of the sugar moiety of the saponin with small polar residues 303 

would produce sapogen-like analogues that might be resistant to ruminal degradation. Both 304 

the acute antiprotozoal activity and the stability of that effect over 24 h of fifteen hederagenin 305 

bis-esters esterified with two identical groups (Figure 1), and five cholesterol and cholic acid 306 

based derivatives carrying one to three succinate residues (Figure 2) was evaluated. Our 5 h 307 

in vitro incubations results showed that, irrespective of their resistance to degradation, some 308 

of the hederagenin derivatives were more effective in reducing protozoa activity than the 309 

natural saponin hederoside B. The greatest effect was shown with TSB45, TSB46 and TSB52 310 

which reduced protozoa activity by 63-75% when they were incubated at 0.05 g/L. 311 

Interestingly among the cholesterol and cholic acid derivatives, TSB39 (cholesteryl 312 

succinate) had the lowest antiprotozoal effect and, TSB42 (lithocholic acid succinate) was 313 

one of the most effective compounds tested, decreasing protozoa activity by 75% when added 314 

at 0.05 g/L. These results agree with the observations of Takechi et al. (1996), who showed 315 

that the biological activity that a specific chemical residue may provide is not transferable 316 

from one derivative to another. To study if the synthesised derivatives were still effective 317 

against protozoa over a longer period of time, in vitro incubations were carried out sampling 318 

at 0, 4, 8 and 24 h to assess the stability of the derivatives in a mixed rumen population. 319 
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Derivatives TSB24, TSB47 and TSB52 seemed to be very effective in causing a decrease in 320 

protozoa motility over time without recovery after 24 h, contrary to the results observed for 321 

hederoside B and the rest of compounds. Surprisingly, none of the cholesterol and cholic acid 322 

derivatives showed an effect on protozoa motility. Although TSB42 had a strong effect in 323 

bacterial breakdown by protozoa over 5 h of incubation, little effect on protozoa motility was 324 

observed in 24 h in vitro batch cultures. These results may suggest a quicker degradation, and 325 

thus the loss of activity, of this compound by rumen bacteria as compared with other 326 

derivatives tested. It is apparent that the compounds that showed a high level of acute toxicity 327 

against protozoa were not always the most stable ones over time. A stability index was 328 

calculated as the percentage of the 8 h activity that remained after 24 h (Figure 5).  Even 329 

though TSB35 reduced protozoa activity by 93% when added at 1 g/L, this compound was 330 

among the least stable derivatives. TSB24 and TSB47, however, showed both high toxicity 331 

(reduction of protozoa activity of 95-100%) and stability over time. 332 

Most of the hederagenin derivatives did not influence total VFA concentration. 333 

However, shifts in the molar proportions of VFA towards lower acetate and butyrate which 334 

was compensated by a higher propionate were observed. These changes have been previously 335 

reported when using different sources of saponins (Wina et al., 2005; Patra and Saxena, 336 

2009a; Jayanegara et al., 2014). The shifts in the molar proportions of butyrate and 337 

propionate shown in the presence of TSB35, TSB37 and TSB47 were, however, much greater 338 

than those that would have been expected because of defaunation. A recent meta-analysis 339 

showed that defaunation decreased butyrate by 22% with no effect on propionate (Newbold 340 

et al., 2015). It should be pointed out that TSB37 was of low purity (66%) and thus, this 341 

hederagenin derivative could have been more effective than others with higher purity. 342 

However, it is possible that the effects observed in the presence of TSB37 were due to the 343 

impurities in this derivative. Although our target in using the synthesised compounds was to 344 
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control protozoal activity, other microorganisms may also have been directly or indirectly 345 

affected by the derivatives resulting in further effects on rumen fermentation. Indeed, a direct 346 

effect of saponins on bacteria, probably mediated by disruption of the cell membrane (Patra 347 

and Saxena, 2009a,b; Bodas et al., 2012), has been reported. Similarly, saponins can exert 348 

antifungal activity by the interaction with membrane sterols leading to pore formation and 349 

loss of membrane integrity (Goel et al., 2008. Patra and Saxena, 2009a,b).  350 

Clearly modifications in the structure of hederagenin resulted in compounds with 351 

different biological activities in vitro. Whereas some compounds (TSB24) were more 352 

effective in reducing protozoa activity and motility, others (TSB37) caused a substantial 353 

increase in propionate. If the effect of these compounds can be confirmed in vivo, the use of 354 

these modified triterpenes in ruminant nutrition will have the potential to improve the 355 

efficiency of nitrogen utilization and decrease methane production thus potential boosting 356 

productivity.  357 

 358 

Conclusion  359 

 360 

Most of the hederagenin bis-esters, and in particular hederagenin bis-sucinate 361 

(TSB24), hederagenin bis-betainate dichloride (TSB37) and hederagenin bis-adipate (TSB47) 362 

had a persistent effect against rumen protozoa in vitro, shifting the fermentation pattern 363 

towards higher propionate and lower butyrate. The confirmation of these effects in vivo 364 

would help to determine if these novel chemically modified triterpenes could potentially be 365 

used in ruminant diets as an effective defaunation agent to, ultimately, increase nitrogen 366 

utilization, decrease methane emissions and enhance animal production.  367 
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Table 1. Inhibition of protozoa activity (% in respect to the control, no addition) by 461 

hederagenin and bile acid derivatives, added at 0.05, 0.1, 0.5 or 1 g/L. 462 

  463 

  Dose (g/L) 

 
0.05 0.1 0.5 1 

 
        

Hederoside B 5.11 22.0 86.0 84.6 
Hederagenin derivatives 

    TSB24: Hederagenin bis-sucinate 5.72 18.8 96.5 100 
TSB33: Hederagenin bis-(methylethylenglycolacetate) 13.6 29.7 51.3 64.5 
TSB34: Hederagenin bis-(MeO-PEG4-carbonate) 7.69 14.1 65.5 69.6 
TSB35: Hederagenin bis-glutarate  7.69 36.0 95.5 93.1 
TSB36: Hederagenin bis-glycincarbamate 0.55 6.19 55.3 93.8 
TSB37: Hederagenin bis-betainate dichloride 16.9 29.1 90.9 94.2 
TSB38: Hederagenin bis-sulfate disodium salt 1.32 4.07 47.9 83.9 
TSB44: Hederagenin bis-lactate 39.1 86.5 98.3 98.4 
TSB45: Hederagenin bis-(2,2-dimethylsuccinate) 63.1 93.6 96.9 97.8 
TSB46: Hederagenin bis-(3,3-dimethylglutarate) 75.3 93.0 97.2 96.7 
TSB47: Hederagenin bis-adipate 29.6 78.1 98.0 94.0 
TSB50: Hederagenin-bis-(diglycolate) 1.06 8.45 75.3 74.3 
TSB51: Hederagenin bis-(diglycinate) 1.74 0.29 54.2 63.8 
TSB52: Hederagenin bis-(3,3-dimethylsuccinate) 66.7 95.2 98.8 98.4 
TSB58: Hederagenin bis-L-tartrate monomethyl ester 0 4.1 95.2 98.2 
 
Cholesterol and Cholic acid derivatives 

    TSB39: Cholesteryl succinate 6.42 18.2 17.7 17.6 
TSB40: Cholic succinate 25.2 23.5 26.5 42.6 
TSB41: Cholic tri-succinate 26.4 21.9 32.9 67.1 
TSB42: Lithocholic succinate 75.1 92.8 97.5 97.4 
TSB43: Chenodesoxycholic bis-succinate 1.68 5.66 15.5 53.4 
     
SED 
Treatment 4.94***    
Dose 2.16***    
Treatment x Dose 9.88***    
     

SED: Standard error of the difference; ***: P<0.001. 464 
 465 

  466 
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Table 2. Effect of Hederagenin and bile acid derivatives, added at 0.5 or 1 g/L, on pH after 24 467 

h of incubation (batch culture). 468 

 469 

  Dose g/L     

 
0 0.5 1 SED P 

  
pH 

    
Hederoside B 6.03 - 6.09 0.048 0.253 
 
Hederagenin derivatives 

     TSB24: Hederagenin bis-sucinate 6.16 6.11 6.15 0.039 0.493 
TSB33: Hederagenin bis- 
(methylethylenglycolacetate) 6.31 6.32 6.31 0.009 0.824 
TSB34: Hederagenin bis-(MeO-PEG4-carbonate) 6.31 6.31 6.31 0.013 0.924 
TSB35: Hederagenin bis-glutarate  6.31a 6.38b 6.38b 0.019 0.017 
TSB36: Hederagenin bis-glycincarbamate 6.31 6.32 6.29 0.019 0.39 
TSB37: Hederagenin bis-betainate dichloride 6.31a 6.36b 6.39c 0.008 <0.001 
TSB38: Hederagenin bis-sulfate disodiumsalt 6.41 6.39 6.40 0.014 0.385 
TSB44: Hederagenin bis-lactate 6.03 6.04 6.04 0.031 0.874 
TSB45: Hederagenin bis-(2,2-dimethylsuccinate) 6.03a 6.12b 6.12b 0.033 0.051 
TSB46: Hederagenin bis-(3,3-dimethylglutarate) 6.16 6.11 6.10 0.034 0.32 
TSB47: Hederagenin bis-adipate 6.16 6.11 6.15 0.043 0.567 
TSB50: Hederagenin bis-(diglycolate) 6.16 6.10 6.11 0.036 0.294 
TSB51: Hederagenin bis-(diglycinate) 6.16 6.06 6.10 0.038 0.122 
TSB52: Hederagenin bis-(3,3-dimethylsuccinate) 6.16 6.14 6.16 0.042 0.834 
TSB58: Hederagenin bis-L-tartrate monomethyl 
ester 6.16 6.12 6.12 0.034 0.464 
 
Cholesterol and Cholic acid derivatives 

     TSB39: Cholesteryl succinate 6.18 6.20 6.18 0.031 0.74 
TSB40: Cholic succinate 6.03 6.06 6.06 0.026 0.419 
TSB41: Cholic tri-succinate 6.03 6.04 6.00 0.019 0.263 
TSB42: Lithocholic succinate 6.18 6.19 6.18 0.020 0.876 
TSB43: Chenodesoxycholic bis-succinate 6.03 6.05 6.03 0.021 0.508 

a–cMeans with different superscript differ (n=4). 470 

 471 

  472 
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Table 3. Effect of Hederagenin and bile acid derivatives, added at 0.5 or 1 g/L, on total VFA 473 

(mM) after 24 h of incubation (batch culture). 474 

 475 

  Dose g/L     

 
0 0.5 1 SED P 

 
total VFA (mM) 

   
Hederoside B 82.5 - 77.2 3.1 0.185 
 
Hederagenin derivatives 

     TSB24: Hederagenin bis-sucinate 70.1 65.4 70.9 4.39 0.448 
TSB33: Hederagenin bis-
(methylethylenglycolacetate) 80.1 78.6 76.3 3.88 0.647 
TSB34: Hederagenin bis-(MeO-PEG4-carbonate) 80.1 75.0 73.9 4.19 0.355 
TSB35: Hederagenin bis-glutarate  80.1b 68.7a 66.7a 3.14 0.011 
TSB36: Hederagenin bis-glycincarbamate 80.1b 71.2a 69.6a 3.42 0.045 
TSB37: Hederagenin bis-betainate dichloride 80.1 70.8 72.1 3.34 0.065 
TSB38: Hederagenin bis-sulfate disodiumsalt 74.3 70.6 67.3 6.32 0.568 
TSB44: Hederagenin bis-lactate 82.5 82.0 82.0 2.04 0.958 
TSB45: Hederagenin bis-(2,2-dimethylsuccinate) 82.5 80.9 73.4 3.47 0.079 
TSB46: Hederagenin bis-(3,3-dimethylglutarate) 70.1 73.8 73.8 3.29 0.467 
TSB47: Hederagenin bis-adipate 70.1 73.1 70.8 3.16 0.620 
TSB50: Hederagenin bis-(diglycolate) 70.1 73.3 73.3 3.84 0.638 
TSB51: Hederagenin bis-(diglycinate) 70.1 69.7 74.0 3.84 0.503 
TSB52: Hederagenin bis-(3,3-dimethylsuccinate) 70.1 69.5 71.3 4.49 0.914 
TSB58: Hederagenin bis-L-tartrate monomethyl 
ester 70.1 71.9 72.3 3.64 0.811 
 
Cholesterol and Cholic acid derivatives 

     TSB39: Cholesteryl succinate 72.5 72.5 73.3 0.579 0.333 
TSB40: Cholic succinate 82.5 80.4 81.3 2.48 0.704 
TSB41: Cholic tri-succinate 82.5 81.5 79.1 2.85 0.512 
TSB42: Lithocholic succinate 72.5 73.0 66.5 2.46 0.070 
TSB43: Chenodesoxycholic bis-succinate 82.5 78.9 77.3 2.98 0.279 

a–bMeans with different superscript differ (n=4). 476 

 477 
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Table 4. Effect of Hederagenin and bile acid derivatives, added at 0.5 or 1 g/L, on Acetate 479 

(%) after 24 h of incubation (batch culture). 480 

 481 

  Dose g/L     

 
0 0.5 1 SED P 

 Acetate % of total VFA   
   
Hederoside B 64.8 - 59.8 0.681 0.005 
 
Hederagenin derivatives 

     TSB24: Hederagenin bis-sucinate 64.1b 62.1b 59.4a 0.837 0.004 
TSB33: Hederagenin bis- 
(methylethylenglycolacetate) 66.1 65.3 65.2 0.435 0.148 
TSB34: Hederagenin bis-(MeO-PEG4-
carbonate) 66.1 65.4 65.2 0.575 0.31 
TSB35: Hederagenin bis-glutarate  66.1c 60.2b 57.2a 0.468 <0.001 
TSB36: Hederagenin bis-glycincarbamate 66.1b 64.7a 64.1a 0.472 0.012 
TSB37: Hederagenin bis-betainate dichloride 66.1c 65.5b 58.3a 0.751 <0.001 
TSB38: Hederagenin bis-sulfate disodiumsalt 62.3 62.7 61.8 0.502 0.259 
TSB44: Hederagenin bis-lactate 64.8 65.4 65.3 0.964 0.787 
TSB45: Hederagenin bis-(2,2-
dimethylsuccinate) 64.8b 61.7a 61.1a 1.177 0.041 
TSB46: Hederagenin bis-(3,3-
dimethylglutarate) 64.1b 61.6a 60.3a 0.767 0.007 
TSB47: Hederagenin bis-adipate 64.1c 59.1b 56.8a 0.875 <0.001 
TSB50: Hederagenin bis-(diglycolate) 64.1 64.4 65.2 1.071 0.582 
TSB51: Hederagenin bis-(diglycinate) 64.1 65.6 64.7 0.77 0.207 
TSB52: Hederagenin bis-(3,3-
dimethylsuccinate) 64.1b 60.8a 60.3a 0.827 0.008 
TSB58: Hederagenin bis-L-tartrate 
monomethyl ester 64.1 65.5 65.3 0.841 0.244 
 
Cholesterol and Cholic acid derivatives 

     TSB39: Cholesteryl succinate 61.8 61.8 61.8 0.19 0.993 
TSB40: Cholic succinate 64.8 65.0 64.7 0.941 0.948 
TSB41: Cholic tri-succinate 64.8 65.5 64.9 1.02 0.744 
TSB42: Lithocholic succinate 61.8b 61.2b 60.1a 0.322 0.005 
TSB43: Chenodesoxycholic bis-succinate 64.8b 64.4b 61.1a 1.25 0.047 

a–cMeans with different superscript differ (n=4). 482 

 483 

 484 
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Table 5. Effect of Hederagenin and bile acid derivatives, added at 0.5 or 1 g/L, on Propionate 486 

(%) after 24 h of incubation (batch culture). 487 

 488 

  Dose g/L     

 
0 0.5 1 SED P 

 
Propionate % of total VFA 

   
Hederoside B 20.1 - 27.2 1.04 0.006 
 
Hederagenin derivatives 

     TSB24: Hederagenin bis-sucinate 18.3a 25.9b 30.5c 1.13 <0.001 
TSB33: Hederagenin bis-
(methylethylenglycolacetate) 18.6a 19.7ab 20.3b 0.516 0.038 
TSB34: Hederagenin bis-(MeO-PEG4-carbonate) 18.6a 20.1ab 20.8b 0.715 0.05 
TSB35: Hederagenin bis-glutarate  18.6a 28.0b 31.4c 0.781 <0.001 
TSB36: Hederagenin bis-glycincarbamate 18.6a 20.7b 22.5c 0.683 0.004 
TSB37: Hederagenin bis-betainate dichloride 18.6a 24.9b 30.6c 1.12 <0.001 
TSB38: Hederagenin bis-sulfate disodiumsalt 20.9a 22.3a 24.5b 0.575 0.002 
TSB44: Hederagenin bis-lactate 20.1 19.5 20.5 1.10 0.632 
TSB45: Hederagenin bis-(2,2-dimethylsuccinate) 20.1a 27.2b 28.3b 1.44 0.002 
TSB46: Hederagenin bis-(3,3-dimethylglutarate) 18.3a 27.4b 28.9b 0.984 <0.001 
TSB47: Hederagenin bis-adipate 18.3a 30.4b 33.7c 1.00 <0.001 
TSB50: Hederagenin bis-(diglycolate) 18.3a 20.2b 20.5b 0.698 0.041 
TSB51: Hederagenin bis-(diglycinate) 18.3a 19.8b 22.4c 0.496 <0.001 
TSB52: Hederagenin bis-(3,3-dimethylsuccinate) 18.3a 28.6b 29.7b 1.18 <0.001 
TSB58: Hederagenin bis-L tartrate monomethyl 
ester 18.3a 19.0a 20.9b 0.579 0.011 
 
Cholesterol and Cholic acid derivatives 

     TSB39: Cholesteryl succinate 21.0 20.8 21.0 0.167 0.458 
TSB40: Cholic succinate 20.1 19.7 20.5 1.139 0.817 
TSB41: Cholic tri-succinate 20.1 19.1 19.6 0.961 0.643 
TSB42: Lithocholic succinate 21.0a 22.8b 25.0c 0.559 0.001 
TSB43: Chenodesoxycholic bis-succinate 20.1 20.6 23.9 1.476 0.079 

a–cMeans with different superscript differ (n=4). 489 

 490 
 491 
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Table 6. Effect of Hederagenin and bile acid derivatives, added at 0.5 or 1 g/L, on Butyrate 493 

(%) after 24 h of incubation (batch culture). 494 

 495 

  Dose g/L     

 
0 0.5 1 SED P 

 
Butyrate % of total VFA 

   
Hederoside B 12.1 - 9.83 0.427 0.013 
 
Hederagenin derivatives 

     TSB24: Hederagenin bis-sucinate 14.3 8.8 7.2 0.606 <0.001 
TSB33: Hederagenin bis-
(methylethylenglycolacetate) 11.7 11.5 11.1 0.25 0.1 
TSB34: Hederagenin bis-(MeO-PEG4-carbonate) 11.7b 11.2ab 10.7a 0.231 0.017 
TSB35: Hederagenin bis-glutarate  11.7b 7.92a 7.54a 0.253 <0.001 
TSB36: Hederagenin bis-glycincarbamate 11.7c 11.2b 10.1a 0.150 <0.001 
TSB37: Hederagenin bis-betainate dichloride 11.7c 9.17b 7.70a 0.375 <0.001 
TSB38: Hederagenin bis-sulfate disodiumsalt 12.8c 11.3b 10.2a 0.4 0.002 
TSB44: Hederagenin bis-lactate 12.1b 11.7b 11.0a 0.173 0.003 
TSB45: Hederagenin bis-(2,2-dimethylsuccinate) 12.1b 7.74a 7.62a 0.394 <0.001 
TSB46: Hederagenin bis-(3,3-dimethylglutarate) 14.3b 8.26a 7.76a 0.571 <0.001 
TSB47: Hederagenin bis-adipate 14.3b 7.35a 6.78a 0.608 <0.001 
TSB50: Hederagenin bis-(diglycolate) 14.3b 12.6a 11.7a 0.506 0.005 
TSB51: Hederagenin bis-(diglycinate) 14.3b 11.7a 10.2a 0.606 0.001 
TSB52: Hederagenin bis-(3,3-dimethylsuccinate) 14.3b 7.86a 7.33a 0.746 0.001 
TSB58: Hederagenin bis-L-tartrate monomethyl 
ester 14.3c 12.5b 11.2a 0.383 <0.001 
 
Cholesterol and Cholic acid derivatives 

     TSB39: Cholesteryl succinate 12.9 13.0 12.8 0.094 0.341 
TSB40: Cholic succinate 12.1b 11.8b 11.3a 0.178 0.013 
TSB41: Cholic tri-succinate 12.1 12.0 12.1 0.322 0.938 
TSB42: Lithocholic succinate 12.9c 11.4b 10.2a 0.257 <0.001 
TSB43: Chenodesoxycholic bis-succinate 12.1c 11.5b 10.9a 0.176 0.002 

a–cMeans with different superscript differ (n=4). 496 
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Table 7. Effect of Hederagenin and bile acid derivatives, added at 0.5 or 1 g/L, on branched 499 

chain volatile fatty acids (BCVFA) (%) after 24 h of incubation (batch culture). 500 

 501 

  Dose g/L     
  0 0.5 1 SED P 

  
BCVFA % of total 

VFA    
Hederoside B 1.95 - 2.08 0.161 0.474 
 
Hederagenin derivatives 

     TSB24: Hederagenin bis-sucinate 2.08b 1.96ab 1.81a 0.081 0.045 
TSB33: Hederagenin bis-
(methylethylenglycolacetate) 2.47 2.29 2.29 0.126 0.307 
TSB34: Hederagenin bis-(MeO-PEG4-carbonate) 2.47a 2.19ab 2.11b 0.124 0.056 
TSB35: Hederagenin bis-glutarate  2.47 2.23 2.65 0.216 0.219 
TSB36: Hederagenin bis-glycincarbamate 2.47 2.33 2.34 0.229 0.775 
TSB37: Hederagenin bis-betainate dichloride 2.47 2.26 2.35 0.082 0.103 
TSB38: Hederagenin bis-sulfate disodiumsalt 2.64b 2.42ab 2.22a 0.120 0.032 
TSB44: Hederagenin bis-lactate 1.95 2.30 2.07 0.275 0.469 
TSB45: Hederagenin bis-(2,2-dimethylsuccinate) 1.95 2.36 1.85 0.321 0.305 
TSB46: Hederagenin bis-(3,3-dimethylglutarate) 2.08b 1.68a 2.01b 0.096 0.012 
TSB47: Hederagenin bis-adipate 2.08 1.91 1.77 0.166 0.263 
TSB50: Hederagenin bis-(diglycolate) 2.08b 1.79a 1.62a 0.11 0.016 
TSB51: Hederagenin bis-(diglycinate) 2.08b 1.69a 1.63a 0.08 0.003 
TSB52: Hederagenin bis-(3,3-dimethylsuccinate) 2.08b 1.59a 1.58a 0.088 0.002 
TSB58: Hederagenin bis-L-tartrate monomethyl 
ester 2.08b 1.86b 1.57a 0.091 0.004 
 
Cholesterol and Cholic acid derivatives 

     TSB39: Cholesteryl succinate 3.10 3.23 3.13 0.261 0.879 
TSB40: Cholic succinate 1.95 2.40 2.45 0.209 0.1 
TSB41: Cholic tri-succinate 1.95 2.30 2.31 0.1772 0.141 
TSB42: Lithocholic succinate 3.10 3.63 3.49 0.191 0.203 
TSB43: Chenodesoxycholic bis-succinate 1.95a 2.52ab 3.00b 0.319 0.044 

a–bMeans with different superscript differ (n=4). 502 
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Figure legends 505 

 506 

Figure 1. Structure of Hederagenin derivatives. 507 

Figure 2. Structure of Cholesterol and Cholic acid derivatives and Hederoside B. 508 

Figure 3. Protozoa motility over 24 h in the absence (control) or presence of different 509 

hederagenin derivatives at 0.5 (A) and 1 g/L (B). Hederoside B was used as a positive control 510 

at 1 g/L. Error bars indicate the standard error of the difference for each time point (n = 4). 511 

Figure 4. Protozoa motility over 24 h in the absence (control) or presence of different 512 

cholesterol and cholic acid derivatives at 0.5 (A) and 1 g/L (B). Hederoside B was used as a 513 

positive control at 1 g/L. Error bars indicate the standard error of the difference for each time 514 

point (n = 4). 515 

Figure 5. Stability index (calculated as the percentage of the motility at 8 h that remained at 516 

24 h) against motility scores at 8 h in the presence of hederagenin and cholesterol and cholic 517 

acid derivatives and hederoside B (HB) at 1 g/L. Error bars indicate the standard error of the 518 

difference (n = 4). 519 
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Figure 02.JPEG
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Figure 03.JPEG
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Figure 04.JPEG
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