32 research outputs found

    Acute mesenteric ischaemia in refractory shock on veno-arterial extracorporeal membrane oxygenation

    Get PDF
    Background: Acute mesenteric ischaemia is a severe complication in critically ill patients, but has never been evaluated in patients on veno-arterial extracorporeal membrane oxygenation (V-A ECMO). This study was designed to determine the prevalence of mesenteric ischaemia in patients supported by V-A ECMO and to evaluate its risk factors, as well as to appreciate therapeutic modalities and outcome. Methods: In a retrospective single centre study (January 2013 to January 2017), all consecutive adult patients who underwent V-A ECMO were included, with exclusion of those dying in the first 24 hours. Diagnosis of mesenteric ischaemia was performed using digestive endoscopy, computed tomography scan or first-line laparotomy. Results: One hundred and fifty V-A ECMOs were implanted (65 for post-cardiotomy shock, 85 for acute cardiogenic shock, including 39 patients after refractory cardiac arrest). Overall, median age was 58 (48-69) years and mortality 56%. Acute mesenteric ischaemia was suspected in 38 patients, with a delay of four (2-7) days after ECMO implantation, and confirmed in 14 patients, that is, a prevalence of 9%. Exploratory laparotomy was performed in six out of 14 patients, the others being too unstable to undergo surgery. All patients with mesenteric ischaemia died. Independent risk factors for developing mesenteric ischaemia were renal replacement therapy (odds ratio (OR) 4.5, 95% confidence interval (CI) 1.3-15.7, p=0.02) and onset of a second shock within the first five days (OR 7.8, 95% CI 1.5-41.3, p=0.02). Conversely, early initiation of enteral nutrition was negatively associated with mesenteric ischaemia (OR 0.15, 95% CI 0.03-0.69, p=0.02). Conclusions: Acute mesenteric ischaemia is a relatively frequent but dramatic complication among patients on V-A ECMO

    Prediction of nitrogen excretion from data on dairy cows fed a wide range of diets compiled in an intercontinental database: A meta-analysis

    Get PDF
    Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total 2manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Breakthrough in cardiac arrest: reports from the 4th Paris International Conference

    Get PDF

    Prediction of nitrogen excretion from data on dairy cows fed a wide range of diets compiled in an intercontinental database: A meta-analysis

    No full text
    Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.ISSN:0022-0302ISSN:1525-319

    Prediction of enteric methane production and yield in dairy cattle using a Latin America and Caribbean database.

    No full text
    ABSTRACT: Successful mitigation efforts entail accurate estimation of on-farm emission and prediction models can be an alternative to current laborious and costly in vivo CH4 measurement techniques. This study aimed to: (1) collate a database of individual dairy cattle CH4 emission data from studies conducted in the Latin America and Caribbean (LAC) region; (2) identify key variables for predicting CH4 production (g d−1) and yield [g kg−1 of dry matter intake (DMI)]; (3) develop and cross-validate these newly-developed models; and (4) compare models' predictive ability with equations currently used to support national greenhouse gas (GHG) inventories. A total of 42 studies including 1327 individual dairy cattle records were collated. After removing outliers, the final database retained 34 studies and 610 animal records. Production and yield of CH4 were predicted by fitting mixed-effects models with a random effect of study. Evaluation of developed models and fourteen extant equations was assessed on all-data, confined, and grazing cows subsets. Feed intake was the most important predictor of CH4 production. Our best-developed CH4 production models outperformed Tier 2 equations from the Intergovernmental Panel on Climate Change (IPCC) in the all-data and grazing subsets, whereas they had similar performance for confined animals. Developed CH4 production models that include milk yield can be accurate and useful when feed intake is missing. Some extant equations had similar predictive performance to our best-developed models and can be an option for predicting CH4 production from LAC dairy cows. Extant equations were not accurate in predicting CH4 yield. The use of the newly-developed models rather than extant equations based on energy conversion factors, as applied by the IPCC, can substantially improve the accuracy of GHG inventories in LAC countries
    corecore