403 research outputs found

    Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem.

    Get PDF
    Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids

    The Fungicide Chlorothalonil Is Nonlinearly Associated with Corticosterone Levels, Immunity, and Mortality in Amphibians

    Get PDF
    Background: Contaminants have been implicated in declines of amphibians, a taxon with vital systems similar to those of humans. However, many chemicals have not been thoroughly tested on amphibians or do not directly kill them

    Watershed Management on Range and Forest Lands Proceedings of the Fifth Workshop of the United States/Australia Rangelands Panel

    Get PDF
    Preface: The U.S.-Australia Cooperative Rangeland Science Program In October 1968 the governments of the United States and Australia entered into an agreement for the purpose of facilitating close cooperative activities between the scientific communities of the two countries. The joint communique issued at that time designated the U.S. National Science Foundation and the Australian Commonwealth Department of Education and Science as the coordinating agencies. Both countries were to encourage binational teamwork in research, interchanges of scientists, joint seminars, and exchanges of information. A United States-Australia Rangeland Panel was established in December 1969 to further cooperation between the two countries in the rangeland sciences. The present panel includes the following

    International Coercion, Emulation and Policy Diffusion: Market-Oriented Infrastructure Reforms, 1977-1999

    Full text link
    Why do some countries adopt market-oriented reforms such as deregulation, privatization and liberalization of competition in their infrastructure industries while others do not? Why did the pace of adoption accelerate in the 1990s? Building on neo-institutional theory in sociology, we argue that the domestic adoption of market-oriented reforms is strongly influenced by international pressures of coercion and emulation. We find robust support for these arguments with an event-history analysis of the determinants of reform in the telecommunications and electricity sectors of as many as 205 countries and territories between 1977 and 1999. Our results also suggest that the coercive effect of multilateral lending from the IMF, the World Bank or Regional Development Banks is increasing over time, a finding that is consistent with anecdotal evidence that multilateral organizations have broadened the scope of the “conditionality” terms specifying market-oriented reforms imposed on borrowing countries. We discuss the possibility that, by pressuring countries into policy reform, cross-national coercion and emulation may not produce ideal outcomes.http://deepblue.lib.umich.edu/bitstream/2027.42/40099/3/wp713.pd

    Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images: MLWIC2

    Get PDF
    Motion-activated wildlife cameras (or “camera traps”) are frequently used to remotely and noninvasively observe animals. The vast number of images collected from camera trap projects has prompted some biologists to employ machine learning algorithms to automatically recognize species in these images, or at least filter-out images that do not contain animals. These approaches are often limited by model transferability, as a model trained to recognize species from one location might not work as well for the same species in different locations. Furthermore, these methods often require advanced computational skills, making them inaccessible to many biologists. We used 3 million camera trap images from 18 studies in 10 states across the United States of America to train two deep neural networks, one that recognizes 58 species, the “species model,” and one that determines if an image is empty or if it contains an animal, the “empty-animal model.” Our species model and empty-animal model had accuracies of 96.8% and 97.3%, respectively. Furthermore, the models performed well on some out-of-sample datasets, as the species model had 91% accuracy on species from Canada (accuracy range 36%–91% across all out-of-sample datasets) and the empty-animal model achieved an accuracy of 91%–94% on out-of-sample datasets from different continents. Our software addresses some of the limitations of using machine learning to classify images from camera traps. By including many species from several locations, our species model is potentially applicable to many camera trap studies in North America. We also found that our empty-animal model can facilitate removal of images without animals globally. We provide the trained models in an R package (MLWIC2: Machine Learning for Wildlife Image Classification in R), which contains Shiny Applications that allow scientists with minimal programming experience to use trained models and train new models in six neural network architectures with varying depths

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The rate of telomere loss is related to maximum lifespan in birds

    Get PDF
    Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'
    corecore