425 research outputs found

    Tidal damping of the mutual inclination in hierachical systems

    Full text link
    Hierarchical two-planet systems, in which the inner body's semi-major axis is between 0.1 and 0.5 AU, usually present high eccentricity values, at least for one of the orbits. As a result of the formation process, one may expect that planetary systems with high eccentricities also have high mutual inclinations. However, here we show that tidal effects combined with gravitational interactions damp the initial mutual inclination to modest values in timescales that are shorter than the age of the system. This effect is not a direct consequence of tides on the orbits, but it results from a secular forcing of the inner planet's flattening. We then conclude that these hierarchical planetary systems are unlikely to present very high mutual inclinations, at least as long as the orbits remain outside the Lidov-Kozai libration areas. The present study can also be extended to systems of binary stars and to planet-satellite systems.Comment: 16 pages, 13 figure

    A new analysis of the WASP-3 system: no evidence for an additional companion

    Full text link
    In this work we investigate the problem concerning the presence of additional bodies gravitationally bounded with the WASP-3 system. We present eight new transits of this planet and analyse all the photometric and radial velocity data published so far. We did not observe significant periodicities in the Fourier spectrum of the observed minus calculated (O-C) transit timing and radial velocity diagrams (the highest peak having false-alarm probabilities of 56 per cent and 31 per cent, respectively) or long-term trends. Combining all the available information, we conclude that the radial velocity and transit timing techniques exclude, at 99 per cent confidence limit, any perturber more massive than M \gtrsim 100 M_Earth with periods up to 10 times the period of the inner planet. We also investigate the possible presence of an exomoon on this system and determined that considering the scatter of the O-C transit timing residuals a coplanar exomoon would likely produce detectable transits. This hypothesis is however apparently ruled out by observations conducted by other researchers. In case the orbit of the moon is not coplanar the accuracy of our transit timing and transit duration measurements prevents any significant statement. Interestingly, on the basis of our reanalysis of SOPHIE data we noted that WASP-3 passed from a less active (log R'_hk=-4.95) to a more active (log R'_hk=-4.8) state during the 3 yr monitoring period spanned by the observations. Despite no clear spot crossing has been reported for this system, this analysis claims for a more intensive monitoring of the activity level of this star in order to understand its impact on photometric and radial velocity measurements.Comment: MNRAS accepted (14/08/2012

    Evaluation of CAY-1, an Experimental, Natural Fungicide, For Control of Strawberry Pathogens

    Get PDF
    CAY-1 is an experimental, natural product being tested as a potential fungicide. This saponin isolated from Capsicum frutescens interacts with membrane sterols causing leakage of cell components and ultimately cell death in a variety of fungi. CAY-1 and the commercial fungicide captan were tested in an in vitro doseresponse dilution-broth assay. They caused at least 85% growth inhibition of the fungal pathogens Colletotrichum acutatum, C fragariae and C. gloeosporioides when tested at 3.0 μM. Even though CAY-1 strongly reduced the growth of these fungal pathogens in laboratory assays and prevented anthracnose development in detached leaf assays, it did not control foliar or fruit rot diseases of strawberry in field trials

    Detectability of shape deformation in short-period exoplanets

    Get PDF
    Context Short-period planets are influenced by the extreme tidal forces of their parent stars. These forces deform the planets causing them to attain nonspherical shapes. The nonspherical shapes, modeled here as triaxial ellipsoids, can have an impact on the observed transit light-curves and the parameters derived for these planets. Aims We investigate the detectability of tidal deformation in short-period planets from their transit light curves and the instrumental precision needed. We also aim to show how detecting planet deformation allows us to obtain an observational estimate of the second fluid Love number from the light curve, which provides valuable information about the internal structure of the planet. Methods We adopted a model to calculate the shape of a planet due to the external potentials acting on it and used this model to modify the ellc transit tool. We used the modified ellc to generate the transit light curve for a deformed planet. Our model is parameterized by the Love number; therefore, for a given light curve we can derive the value of the Love number that best matches the observations. Results We simulated the known cases of WASP-103b and WASP-121b which are expected to be highly deformed. Our analyses show that instrumental precision ≤50 ppm min−1 is required to reliably estimate the Love number and detect tidal deformation. This precision can be achieved for WASP-103b in ∼40 transits using the Hubble Space Telescope and in ∼300 transits using the forthcoming CHEOPS instrument. However, fewer transits will be required for short-period planets that may be found around bright stars in the TESS and PLATO survey missions. The unprecedented precisions expected from PLATO and JWST will permit the detection of shape deformation with a single transit observation. However, the effects of instrumental and astrophysical noise must be considered as they can increase the number of transits required to reach the 50 ppm min−1 detection limit. We also show that improper modeling of limb darkening can act to bury signals related to the shape of the planet, thereby leading us to infer sphericity for a deformed planet. Accurate determination of the limb darkening coefficients is therefore required to confirm planet deformation

    Ponderomotive effects in multiphoton pair production

    Full text link
    The Dirac-Heisenberg-Wigner formalism is employed to investigate electron-positron pair production in cylindrically symmetric but otherwise spatially inhomogeneous, oscillating electric fields. The oscillation frequencies are hereby tuned to obtain multiphoton pair production in the nonperturbative threshold regime. An effective mass as well as a trajectory-based semi-classical analysis are introduced in order to interpret the numerical results for the distribution functions as well as for the particle yields and spectra. The results, including the asymptotic particle spectra, display clear signatures of ponderomotive forces.Comment: 9 pages, 3 Tables, 3 Figure

    Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge

    Get PDF
    Motivation: After more than a decade since microarrays were used to predict phenotype of biological samples, real-life applications for disease screening and identification of patients who would best benefit from treatment are still emerging. The interest of the scientific community in identifying best approaches to develop such prediction models was reaffirmed in a competition style international collaboration called IMPROVER Diagnostic Signature Challenge whose results we describe herein. Results: Fifty-four teams used public data to develop prediction models in four disease areas including multiple sclerosis, lung cancer, psoriasis and chronic obstructive pulmonary disease, and made predictions on blinded new data that we generated. Teams were scored using three metrics that captured various aspects of the quality of predictions, and best performers were awarded. This article presents the challenge results and introduces to the community the approaches of the best overall three performers, as well as an R package that implements the approach of the best overall team. The analyses of model performance data submitted in the challenge as well as additional simulations that we have performed revealed that (i) the quality of predictions depends more on the disease endpoint than on the particular approaches used in the challenge; (ii) the most important modeling factor (e.g. data preprocessing, feature selection and classifier type) is problem dependent; and (iii) for optimal results datasets and methods have to be carefully matched. Biomedical factors such as the disease severity and confidence in diagnostic were found to be associated with the misclassification rates across the different teams. Availability: The lung cancer dataset is available from Gene Expression Omnibus (accession, GSE43580). The maPredictDSC R package implementing the approach of the best overall team is available at www.bioconductor.org or http://bioinformaticsprb.med.wayne.edu/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Environment, human reproduction, menopause, and andropause.

    Get PDF
    As the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator is an integrator of hormonal, metabolic, and neural signals, it is not surprising that the function of the hypothalamogonadal axis is subject to the influence of a large array of environmental factors. Before puberty, the central nervous system (CNS) restrains the GnRH pulse generator. Undernutrition, low socioeconomic status, stress, and emotional deprivation, all delay puberty. During reproductive life, among peripheral factors that effect the reproductive system, stress plays an important role. Stress, via the release of corticotropin-releasing factor (CRF), eventually triggered by interleukin 1, inhibits GnRH release, resulting in hypogonadism. Effects of CRF are probably mediated by the opioid system. Food restriction and underweight (anorexia nervosa), obesity, smoking, and alcohol all have negative effects on the GnRH pulse generator and gonadal function. Age and diet are important determinants of fertility in both men and women. The age-associated decrease in fertility in women has as a major determinant chromosomal abnormalities of the oocyte, with uterine factors playing a subsidiary role. Age at menopause, determined by ovarian oocyte depletion, is influenced by occupation, age at menarche, parity, age at last pregnancy, altitude, smoking, and use of oral contraceptives. Smoking, however, appears to be the major determinant. Premature menopause is most frequently attributable to mosaicism for Turner Syndrome, mumps ovaritis, and, above all, total hysterectomy, which has a prevalence of about 12-15% in women 50 years old. Premature ovarian failure with presence of immature follicles is most frequently caused by autoimmune diseases or is the consequence of irradiation or chemotherapy with alkylating cytostatics. Plasma estrogens have a physiological role in the prevention of osteoporosis. Obese women have osteoporosis less frequently than women who are not overweight. Early menopause, suppression of adrenal function (corticoids), and thyroid hormone treatment all increase the frequency of osteoporosis. Aging in men is accompanied by decreased Leydig cell and Sertoli cell function, which has a predominantly primary testicular origin, although changes also occur at the hypothalamopituitary level. Plasma testosterone levels, sperm production, and sperm quality decrease, but fertility, although declining, is preserved until senescence. Stress and disease states accelerate the decline on Leydig cell function. Many occupational noxious agents have a negative effect on fertility.(ABSTRACT TRUNCATED AT 400 WORDS

    Harmonizing methods for wildlife abundance estimation and pathogen detection in Europe-a questionnaire survey on three selected host-pathogen combinations

    Get PDF
    __Background:__ The need for wildlife health surveillance as part of disease control in wildlife, domestic animals and humans on the global level is widely recognized. However, the objectives, methods and intensity of existing wildlife health surveillance programs vary greatly among European countries, resulting in a patchwork of data that are difficult to merge and compare. This survey aimed at evaluating the need and potential for data harmonization in wildlife health in Europe. The specific objective was to collect information on methods currently used to estimate host abundance and pathogen prevalence. Questionnaires were designed t
    corecore