7,183 research outputs found
Addressing business agility challenges with enterprise systems
It is clear that systems agility (i.e., having a responsive IT infrastructure that can be changed quickly to meet changing business needs) has become a critical component of organizational agility. However, skeptics continue to suggest that, despite the benefits enterprise system packages provide, they are constraining choices for firms faced with agility challenges. The reason for this skepticism is that the tight integration between different parts of the business that enables many enterprise systems\u27 benefits also increases the systems\u27 complexity, and this increased complexity, say the skeptics, increases the difficulty of changing systems when business needs change. These persistent concerns motivated us to conduct a series of interviews with business and IT managers in 15 firms to identify how they addressed, in total, 57 different business agility challenges. Our analysis suggests that when the challenges involved an enterprise system, firms were able to address a high percentage of their challenges with four options that avoid the difficulties associated with changing the complex core system: capabilities already built-in to the package but not previously used, leveraging globally consistent integrated data already available, using add-on systems available on the market that easily interfaced with the existing enterprise system, and vendor provided patches that automatically updated the code. These findings have important implications for organizations with and without enterprise system architectures
Gain properties of dye-doped polymer thin films
Hybrid pumping appears as a promising compromise in order to reach the much
coveted goal of an electrically pumped organic laser. In such configuration the
organic material is optically pumped by an electrically pumped inorganic device
on chip. This engineering solution requires therefore an optimization of the
organic gain medium under optical pumping. Here, we report a detailed study of
the gain features of dye-doped polymer thin films. In particular we introduce
the gain efficiency , in order to facilitate comparison between different
materials and experimental conditions. The gain efficiency was measured with
various setups (pump-probe amplification, variable stripe length method, laser
thresholds) in order to study several factors which modify the actual gain of a
layer, namely the confinement factor, the pump polarization, the molecular
anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt\% DCM
doped PMMA layer, the different experimental approaches give a consistent value
80 cm.MW. On the contrary, the usual model predicting the gain
from the characteristics of the material leads to an overestimation by two
orders of magnitude, which raises a serious problem in the design of actual
devices. In this context, we demonstrate the feasibility to infer the gain
efficiency from the laser threshold of well-calibrated devices. Besides,
temporal measurements at the picosecond scale were carried out to support the
analysis.Comment: 15 pages, 17 figure
Development of magnetostrictive active members for control of space structures
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed
Fast shower simulation in the ATLAS calorimeter
The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.
In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper
Persistent Polypharmacy and Fall Injury Risk: The Health, Aging and Body Composition Study
Background
Older adults receive treatment for fall injuries in both inpatient and outpatient settings. The effect of persistent polypharmacy (i.e. using multiple medications over a long period) on fall injuries is understudied, particularly for outpatient injuries. We examined the association between persistent polypharmacy and treated fall injury risk from inpatient and outpatient settings in community-dwelling older adults.
Methods
The Health, Aging and Body Composition Study included 1764 community-dwelling adults (age 73.6 ± 2.9 years; 52% women; 38% black) with Medicare Fee-For-Service (FFS) claims at or within 6 months after 1998/99 clinic visit. Incident fall injuries (N = 545 in 4.6 ± 2.9 years) were defined as the initial claim with an ICD-9 fall E-code and non-fracture injury, or fracture code with/without a fall code from 1998/99 clinic visit to 12/31/08. Those without fall injury (N = 1219) were followed for 8.1 ± 2.6 years. Stepwise Cox models of fall injury risk with a time-varying variable for persistent polypharmacy (defined as ≥6 prescription medications at the two most recent consecutive clinic visits) were adjusted for demographics, lifestyle characteristics, chronic conditions, and functional ability. Sensitivity analyses explored if persistent polypharmacy both with and without fall risk increasing drugs (FRID) use were similarly associated with fall injury risk.
Results
Among 1764 participants, 636 (36%) had persistent polypharmacy over the follow-up period, and 1128 (64%) did not. Fall injury incidence was 38 per 1000 person-years. Persistent polypharmacy increased fall injury risk (hazard ratio [HR]: 1.31 [1.06, 1.63]) after adjusting for covariates. Persistent polypharmacy with FRID use was associated with a 48% increase in fall injury risk (95%CI: 1.10, 2.00) vs. those who had non-persistent polypharmacy without FRID use. Risks for persistent polypharmacy without FRID use (HR: 1.22 [0.93, 1.60]) and non-persistent polypharmacy with FRID use (HR: 1.08 [0.77, 1.51]) did not significantly increase compared to non-persistent polypharmacy without FRID use.
Conclusions
Persistent polypharmacy, particularly combined with FRID use, was associated with increased risk for treated fall injuries from inpatient and outpatient settings. Clinicians may need to consider medication management for FRID and other fall prevention strategies in community-dwelling older adults with persistent polypharmacy to reduce fall injury risk
HOXA3 Modulates Injury-Induced Mobilization and Recruitment of Bone Marrow-Derived Cells
The regulated recruitment and differentiation of multipotent bone marrow-derived cells (BMDCs) to sites of injury are critical for efficient wound healing. Previously we demonstrated that sustained expression of HOXA3 both accelerated wound healing and promoted angiogenesis in diabetic mice. In this study, we have used green fluorescent protein-positive bone marrow chimeras to investigate the effect of HOXA3 expression on recruitment of BMDCs to wounds. We hypothesized that the enhanced neovascularization induced by HOXA3 is due to enhanced mobilization, recruitment, and/or differentiation of BMDCs. Here we show that diabetic mice treated with HOXA3 displayed a significant increase in both mobilization and recruitment of endothelial progenitor cells compared with control mice. Importantly, we also found that HOXA3-treated mice had significantly fewer inflammatory cells recruited to the wound compared with control mice. Microarray analyses of HOXA3-treated wounds revealed that indeed HOXA3 locally increased expression of genes that selectively promote stem/progenitor cell mobilization and recruitment while also suppressing expression of numerous members of the proinflammatory nuclear factor κB pathway, including myeloid differentiation primary response gene 88 and toll-interacting protein. Thus HOXA3 accelerates wound repair by mobilizing endothelial progenitor cells and attenuating the excessive inflammatory response of chronic wounds
Satellite-Based Evidence for Shrub and Graminoid Tundra Expansion in Northern Quebec from 1986-2010
Global vegetation models predict rapid poleward migration of tundra and boreal forest vegetation in response to climate warming. Local plot and air-photo studies have documented recent changes in high-latitude vegetation composition and structure, consistent with warming trends. To bridge these two scales of inference, we analyzed a 24-year (1986-2010) Landsat time series in a latitudinal transect across the boreal forest-tundra biome boundary in northern Quebec province, Canada. This region has experienced rapid warming during both winter and summer months during the last forty years. Using a per-pixel (30 m) trend analysis, 30% of the observable (cloud-free) land area experienced a significant (p < 0.05) positive trend in the Normalized Difference Vegetation Index (NDVI). However, greening trends were not evenly split among cover types. Low shrub and graminoid tundra contributed preferentially to the greening trend, while forested areas were less likely to show significant trends in NDVI. These trends reflect increasing leaf area, rather than an increase in growing season length, because Landsat data were restricted to peak-summer conditions. The average NDVI trend (0.007/yr) corresponds to a leaf-area index (LAI) increase of ~0.6 based on the regional relationship between LAI and NDVI from the Moderate Resolution Spectroradiometer (MODIS). Across the entire transect, the area-averaged LAI increase was ~0.2 during 1986-2010. A higher area-averaged LAI change (~0.3) within the shrub-tundra portion of the transect represents a 20-60% relative increase in LAI during the last two decades. Our Landsat-based analysis subdivides the overall high-latitude greening trend into changes in peak-summer greenness by cover type. Different responses within and among shrub, graminoid, and tree-dominated cover types in this study indicate important fine-scale heterogeneity in vegetation growth. Although our findings are consistent with community shifts in low-biomass vegetation types over multi-decadal time scales, the response in tundra and forest ecosystems to recent warming was not uniform
- …