132 research outputs found

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    Previous Lung Diseases and Lung Cancer Risk: A Systematic Review and Meta-Analysis

    Get PDF
    In order to review the epidemiologic evidence concerning previous lung diseases as risk factors for lung cancer, a meta-analysis and systematic review was conducted.Relevant studies were identified through MEDLINE searches. Using random effects models, summary effects of specific previous conditions were evaluated separately and combined. Stratified analyses were conducted based on smoking status, gender, control sources and continent.A previous history of COPD, chronic bronchitis or emphysema conferred relative risks (RR) of 2.22 (95% confidence interval (CI): 1.66, 2.97) (from 16 studies), 1.52 (95% CI: 1.25, 1.84) (from 23 studies) and 2.04 (95% CI: 1.72, 2.41) (from 20 studies), respectively, and for all these diseases combined 1.80 (95% CI: 1.60, 2.11) (from 39 studies). The RR of lung cancer for subjects with a previous history of pneumonia was 1.43 (95% CI: 1.22-1.68) (from 22 studies) and for subjects with a previous history of tuberculosis was 1.76 (95% CI=1.49, 2.08), (from 30 studies). Effects were attenuated when restricting analysis to never smokers only for COPD/emphysema/chronic bronchitis (RR=1.22, 0.97-1.53), however remained significant for pneumonia 1.36 (95% CI: 1.10, 1.69) (from 8 studies) and tuberculosis 1.90 (95% CI: 1.45, 2.50) (from 11 studies).Previous lung diseases are associated with an increased risk of lung cancer with the evidence among never smokers supporting a direct relationship between previous lung diseases and lung cancer

    Work, the Opiate of Some

    No full text
    corecore