96 research outputs found

    Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions

    Get PDF
    Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO2). The efficiency of the scCO2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6–10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1–16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h

    Application of isothermal titration calorimetry in evaluation of protein–nanoparticle interactions

    Get PDF
    Nanoparticles (NPs) offer a number of advantages over small organic molecules for controlling protein behaviour inside the cell. Protein binding to the surface of NPs depends on their surface characteristics, composition and method of preparation (Mandal et al. in J Hazard Mater 248–249:238–245, 2013). It is important to understand the binding affinities, stoichiometries and thermodynamical parameters of NP–protein interactions in order to see which interaction will have toxic and hazardous consequences and thus to prevent it. On the other side, because proteins are on the brink of stability, they may experience interactions with some types of NPs that are strong enough to cause denaturation or significantly change their conformations with concomitant loss of their biological function. Structural changes in the protein may cause exposure of new antigenic sites, “cryptic” peptide epitopes, potentially triggering an immune response which can promote autoimmune disease (Treuel et al. in ACS Nano 8(1):503–513, 2014). Mechanistic details of protein structural changes at NP surface have still remained elusive. Understanding the formation and persistence of the protein corona is critical issue; however, there are no many analytical methods which could provide detailed information about the NP–protein interaction characteristics and about protein structural changes caused by interactions with nanoparticles. The article reviews recent studies in NP–protein interactions research and application of isothermal titration calorimetry (ITC) in this research. The study of protein structural changes upon adsorption on nanoparticle surface and application of ITC in these studies is emphasized. The data illustrate that ITC is a versatile tool for evaluation of interactions between NPs and proteins. When coupled with other analytical methods, it is important analytical tool for monitoring conformational changes in proteins

    Thermodynamic study of interactions between ZnO and ZnO binding peptides using isothermal titration calorimetry

    Get PDF
    Whilst material specific peptide binding sequences have been identified using a combination of combinato-rial methods and computational modelling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering con-trol over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC) and alanine mutants of G-12 (G-12A6, G-12A11 and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endo-thermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different pep-tides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol and high adsorption affinity val-ues indicated the occurrence of favourable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions and with continued development, the knowledge gained may be instrumental for simplifi-cation of selection processes of organic molecules for the advancement of material synthesis and design

    Simple scoring system to predict in-hospital mortality after surgery for infective endocarditis

    Get PDF
    BACKGROUND: Aspecific scoring systems are used to predict the risk of death postsurgery in patients with infective endocarditis (IE). The purpose of the present study was both to analyze the risk factors for in-hospital death, which complicates surgery for IE, and to create a mortality risk score based on the results of this analysis. METHODS AND RESULTS: Outcomes of 361 consecutive patients (mean age, 59.1\ub115.4 years) who had undergone surgery for IE in 8 European centers of cardiac surgery were recorded prospectively, and a risk factor analysis (multivariable logistic regression) for in-hospital death was performed. The discriminatory power of a new predictive scoring system was assessed with the receiver operating characteristic curve analysis. Score validation procedures were carried out. Fifty-six (15.5%) patients died postsurgery. BMI >27 kg/m2 (odds ratio [OR], 1.79; P=0.049), estimated glomerular filtration rate 55 mm Hg (OR, 1.78; P=0.032), and critical state (OR, 2.37; P=0.017) were independent predictors of in-hospital death. A scoring system was devised to predict in-hospital death postsurgery for IE (area under the receiver operating characteristic curve, 0.780; 95% CI, 0.734-0.822). The score performed better than 5 of 6 scoring systems for in-hospital death after cardiac surgery that were considered. CONCLUSIONS: A simple scoring system based on risk factors for in-hospital death was specifically created to predict mortality risk postsurgery in patients with IE

    The use of Brazilian vegetable oils in nanoemulsions: an update on preparation and biological applications

    Full text link

    QUALITY OF WATERS OF AQUIFER WEBS OF BISKRA REGION

    No full text
    <p>Controlling the quality of water distributed together with sound resource management is a factor of economic and social development. Also, the chemistry and knowledge of geological and hydrogeological aquifer, the object of this work, we identify the water quality examined through physical-chemical parameters. The study of these parameters more precisely the region of Biskra reveals a generally high mineralized whose origin is essentially the geological nature of enclosing land. However, the waters of the continental interlayer (Albian) are the chemical profile weakest; however, its high temperature makes it difficult to use both to supply drinking water as well as for irrigation. After synthesis of the results for different sheets (groundwater, Miopliocene, Eocene, Albian), the limestone is most interesting at least for drinking water, part of its rate of mineralization (medium), the acceptable temperature (24°C) and its relatively low salinity    (1 to 3 g/l). However, these waters are not used directly for human consumption. They requires further treatment.</p

    Deuteration of Water Enables Self-Organization of Phospholipid-Based Reverse Micelles

    No full text
    1 - ArticlePhospholipid-based reverse micelles are composed of branched cylinders. Their branching points are known to attract themselves and to slide along branches. The rate of this sliding is governed by the lifetime of H(D)-bonded water bridges between phospholipid molecules. This lifetime is increased when the water is deuterated. On condition that the water contains at least 40 D atoms%, water/dipalmitoylphosphatidylcholine (DPPC)/deuterated pyridine reverse micelles with the composition 1.11:250 (v/v) have been shown to self-organize into a liquid crystal in the 310-316 K temperature range. The mechanism of this self-organization is unraveled by following the FTIR and (1)H NMR spectra of more concentrated micelles upon heating. During the preparation of micelles, pyridine-(D(+))H(+) ions are formed. They give rise to hydron transfers, under the influence of the DPPC electric charges, evidenced by two broad FTIR absorptions above (BB1) and below (13132) the nu(C-0) stretch. These hydron transfers occur along strong (D(+))H(+) bonds of pyridinium ions with pyridine (BB1) and DPPC C=O groups (BB2). The proton transfers at the interface of micelles, relayed in the continuous pyridine medium, create a tenuous link between separated micelles, thus facilitating their organization. Upon heating, DPPC heads shrink and DPPC chains expand to make wedge-shaped DPPC molecules. The micelles then change in shape: cylinders constrict and enclosed water drifts towards branching points, which swell. Branching points of neighboring micelles come into contact. Due to the deuteration of water these contacts are prolonged and H bonds are formed between DPPC molecules located in each branching point. Upon storage at 39 degrees C, these branching points fuse. The lateral diffusion of DPPC molecules becomes free, as evidenced by a narrowing of all (1)H NMR resonances. Upon further heating, reorganization into a liquid crystal occurs

    Accumulation of Eu3+ chelates in cells expressing or not P-glycoprotein: Implications for blood-brain barrier crossing

    No full text
    1 - ArticleAlzheimer's disease (AD) is the most commonly form of dementia in the elderly. The development of molecules able to detect biomarkers characteristic of AD is critical to its understanding and treatment. However, such molecules must be able to pass blood-brain barrier (BBB) which is a major impediment to the entry of many therapeutic drugs into the brain. Such a limitation applies to the development of magnetic resonance imaging molecular neuroimaging agents using biomarkers of AD-like P-amyloid deposits, as the common extracellular contrast agents (CAs) are not able to cross an intact BBB. In this work, we have studied the ability of a series of simple Eu3+ Complexes to enter cells overexpressing or not the ABCB1 (P-gp or P-glycoprotein) protein, which is expressed at the BBB and in human embryonic astrocytes. The intracellular uptake of the Eu3+ complexes of linear and macrocyclic polyaminocarboxylate ligands with different charges and lipophilicities was followed by atomic absorption spectrometry. Based on biochemical argument, we propose that lipophilic contrast agents can be efficiently taken up by cells and accumulate inside mitochondria when they are positively charged. The important point is that they are not P-gp substrates. which is one of the major obstacles for them to cross the BBB

    Structural characterization and biological activity of Crabrolin peptide isoforms with different positive charge

    No full text
    The search of antimicrobial peptides (AMP) as candidates for the development of antibiotics is an active research field. In this paper we investigated the role of charged residues in antimicrobial activity by using as a template the previously characterized crabrolin peptide. Mutant peptides in which the charge was diminished (Crabrolin Minus) or increased (Crabrolin Plus) were assayed for their ability to inhibit bacterial growth and to bind model bacterial membranes or lipopolysaccharide (LPS). Structural analysis of both peptides by means of CD, NMR and Molecular Dynamics was also performed and correlated to the biological data. Although native Crabrolin (WT) displays smaller efficacy than other antibacterial peptides with similar length, Crabrolin Plus displays a significant antimicrobial activity while Crabrolin Minus is not active, thus confirming the key role of the positive charge for interacting with the bacterial membrane. Moreover, our results show that charge position has no effect on the helical propensity of the peptides but drastically affects their antimicrobial activity. Antimicrobial activity versus Gram-positive and Gram-negative bacteria, as well as specific interaction with LPS, suggest multiple binding modes for the active peptide

    Metabolomic profiling with NMR discriminates between biphosphonate and doxorubicin effects on B16 melanoma cells

    No full text
    1 - ArticleThe metabolomic profiles of B16 melanoma cells were investigated in vitro with high resolution-magic angle spinning proton magnetic resonance spectroscopy and OPLS multivariate statistical analyse We compared the profiles for untreated melanoma B16-F10 cells and Ca(2+) chelating EGTA, doxorubicin or BP7033 bisphosphonate treated cells The two last molecules are known to induce anti proliferative effects by different mechanisms of action in cells Untreated and EGTA treated cells had similar profiles and were considered together as control cells Several spectral regions could discriminate control from doxorubicin as well as BP7033 treated cells Doxorubicin and BP7033 displayed distinct metabolic profiles Important changes in neutral lipids and inositol were related to doxorubicin activity whereas BP7033 affected essentially phospholipids and alanine/lactate metabolism These results provide new putative targets for both drugs Metabolomics by NMR is shown here to be a good tool for the investigation of the mechanisms of action of drugs in pre clinical studie
    corecore