65 research outputs found

    CD154 Induces Interleukin-6 Secretion by Kidney Tubular Epithelial Cells under Hypoxic Conditions: Inhibition by Chloroquine

    Get PDF
    Funder: MSDAvenirInflammation is a major contributor to tubular epithelium injury in kidney disorders, and the involvement of blood platelets in driving inflammation is increasingly stressed. CD154, the ligand of CD40, is one of the mediators supporting platelet proinflammatory properties. Although hypoxia is an essential constituent of the inflammatory reaction, if and how platelets and CD154 regulate inflammation in hypoxic conditions remain unclear. Here, we studied the control by CD154 of the proinflammatory cytokine interleukin- (IL-) 6 secretion in short-term oxygen (O2) deprivation conditions, using the HK-2 cell line as a kidney tubular epithelial cell (TEC) model. IL-6 secretion was markedly stimulated by CD154 after 1 to 3 hours of hypoxic stress. Both intracellular IL-6 expression and secretion were stimulated by CD154 and associated with a strong upregulation of IL-6 mRNA and increased transcription. Searching for inhibitors of CD154-mediated IL-6 production by HK-2 cells in hypoxic conditions, we observed that chloroquine, a drug that has been repurposed as an anti-inflammatory agent, alleviated this induction. Therefore, CD154 is a potent early stimulus for IL-6 secretion by TECs in O2 deprivation conditions, a mechanism likely to take part in the deleterious inflammatory consequences of platelet activation in kidney tubular injury. The inhibition of CD154-induced IL-6 production by chloroquine suggests the potential usefulness of this drug as a therapeutic adjunct in conditions associated with acute kidney injury

    Régulation de l’activité biologique de la protéine IRE1 : rôle dans le développement des cancers

    No full text
    Le Réticulum endoplasmique (RE) est le premier compartiment intracellulaire traversé par les protéines sécrétées. Au sein de cet organite, les protéines acquièrent une conformation native, et subissent de nombreuses modifications post-traductionnelles telles que la N-glycosylation ou la formation de ponts disulfures. Dans certaines conditions (stress réducteurs, hypoxie, privation en glucose…) des protéines anormalement conformées s’accumulent au sein du RE ce qui conduit à l’induction de l'Unfolded Protein Response (UPR). Cette réponse va alors tout d’abord induire l’inhibition de la traduction, ce qui limite l’entrée de nouvelles protéines dans le RE. En parallèle, un programme transcriptionnel spécifique conduit à l’augmentation de l’expression de protéines impliquées dans le repliement et la dégradation des protéines accumulées dans la lumière du RE. Cette réponse adaptative intégrée est contrôlée principalement par 3 protéines transmembranaires du RE : PERK (PKR-related ER kinase), ATF6 (Activating transcription factor) et enfin IRE1 (Inositol requiring kinase 1) sur laquelle porte notre étude. Au cours de ma thèse, j’ai tout d’abord participé à une étude démontrant que l’activation des voies de signalisation dépendantes d’IRE1 contribuait à la surexpression du VEGF-A in vitro et régulait l’angiogenèse et la croissance tumorale in vivo dans un modèle de greffe orthotopique de cellules U87 dérivées de gliomes humains. Cette protéine pourrait donc constituer une cible thérapeutique potentielle. Ces résultats nous ont par conséquent amenés à identifier des modulateurs de l’activité de la protéine IRE1. Pour cela nous avons développé un test in vitro permettant d’évaluer l’étape essentielle dans l’activation de la protéine IRE1, sa dimérisation. Ce test nous a permis d’identifier un peptide capable d’interférer dans la formation des dimères de la protéine IRE1, mais aussi et de façon inattendue, d’accroître son activité endoribonucléase in vitro et in vivo. Ainsi, nous proposons que ce peptide interfacial issu du domaine kinase de la protéine IRE1 pourrait promouvoir un changement conformationnel du domaine cytosolique de la protéine entière et par conséquent, potentialiserait de façon significative son activité endoribonucléasique. Ce modulateur identifié pourrait donc représenter un nouvel outil à potentiel thérapeutique utilisable par exemple dans des maladies conformationnelles.The endoplasmic Reticulum (ER) is the first intracellular compartment encountered by secretory proteins. In this organelle proteins acquire their correct conformation and undergo many post-translational modifications such as N-glycosylation or disulphide bond formation. Under specific environmental conditions (reductive stress, hypoxia, glucose deprivation …), protein folding is perturbed and uncorrectly folded proteins accumulate in the lumen of the ER. This leads to the activation of an adaptive response named the Unfolded Protein Response (UPR). The UPR consists in an attenuation of protein translation and an activation of a specific transcriptional program. This integrated adaptive response is mediated by 3 transmembrane ER resident proteins: PERK (PKR-related ER kinase), ATF6 (Activating transcription Factor) and IRE1 (Inositol requiring kinase 1) and we focused more particularly on IRE1. During my PhD thesis, I participated to a study that demonstrated the role of IRE1 signaling in the regulation of VEGF expression in vitro and tumor growth and angiogenesis in vivo. The latter was carried out using a ortotopic implantation model of human glioma-derived cells. As a consequence IRE1 could certainly constitute a potential therapeutic target. In an attempt to modulate IRE1 activity, we aimed at identifying artificial modulators of its activity. To this end, we designed an in vitro assay capable of monitoring the first essential step in IRE1 activation process, namely its dimerization. This assay allowed us to identify a peptide able to interfere with IRE1 dimer formation, but, unexpectedly, to also increase its RNAse activity in vitro and in vivo. We propose that this interfacial peptide, derived from IRE1 kinase domain could promote a conformational change in IRE1 cytosolic domain and consequently lead to an increase in its enzymatic activity. This modulator could represent a new tool with therapeutic potential that could then be used in protein misfolding diseases for instance

    Le déficit en alpha-1-antitrypsine

    No full text
    International audienc

    Régulation de l’activité biologique de la protéine IRE1 : rôle dans le développement des cancers

    No full text
    Le Réticulum endoplasmique (RE) est le premier compartiment intracellulaire traversé par les protéines sécrétées. Au sein de cet organite, les protéines acquièrent une conformation native, et subissent de nombreuses modifications post-traductionnelles telles que la N-glycosylation ou la formation de ponts disulfures. Dans certaines conditions (stress réducteurs, hypoxie, privation en glucose…) des protéines anormalement conformées s’accumulent au sein du RE ce qui conduit à l’induction de l'Unfolded Protein Response (UPR). Cette réponse va alors tout d’abord induire l’inhibition de la traduction, ce qui limite l’entrée de nouvelles protéines dans le RE. En parallèle, un programme transcriptionnel spécifique conduit à l’augmentation de l’expression de protéines impliquées dans le repliement et la dégradation des protéines accumulées dans la lumière du RE. Cette réponse adaptative intégrée est contrôlée principalement par 3 protéines transmembranaires du RE : PERK (PKR-related ER kinase), ATF6 (Activating transcription factor) et enfin IRE1 (Inositol requiring kinase 1) sur laquelle porte notre étude. Au cours de ma thèse, j’ai tout d’abord participé à une étude démontrant que l’activation des voies de signalisation dépendantes d’IRE1 contribuait à la surexpression du VEGF-A in vitro et régulait l’angiogenèse et la croissance tumorale in vivo dans un modèle de greffe orthotopique de cellules U87 dérivées de gliomes humains. Cette protéine pourrait donc constituer une cible thérapeutique potentielle. Ces résultats nous ont par conséquent amenés à identifier des modulateurs de l’activité de la protéine IRE1. Pour cela nous avons développé un test in vitro permettant d’évaluer l’étape essentielle dans l’activation de la protéine IRE1, sa dimérisation. Ce test nous a permis d’identifier un peptide capable d’interférer dans la formation des dimères de la protéine IRE1, mais aussi et de façon inattendue, d’accroître son activité endoribonucléase in vitro et in vivo. Ainsi, nous proposons que ce peptide interfacial issu du domaine kinase de la protéine IRE1 pourrait promouvoir un changement conformationnel du domaine cytosolique de la protéine entière et par conséquent, potentialiserait de façon significative son activité endoribonucléasique. Ce modulateur identifié pourrait donc représenter un nouvel outil à potentiel thérapeutique utilisable par exemple dans des maladies conformationnelles.The endoplasmic Reticulum (ER) is the first intracellular compartment encountered by secretory proteins. In this organelle proteins acquire their correct conformation and undergo many post-translational modifications such as N-glycosylation or disulphide bond formation. Under specific environmental conditions (reductive stress, hypoxia, glucose deprivation …), protein folding is perturbed and uncorrectly folded proteins accumulate in the lumen of the ER. This leads to the activation of an adaptive response named the Unfolded Protein Response (UPR). The UPR consists in an attenuation of protein translation and an activation of a specific transcriptional program. This integrated adaptive response is mediated by 3 transmembrane ER resident proteins: PERK (PKR-related ER kinase), ATF6 (Activating transcription Factor) and IRE1 (Inositol requiring kinase 1) and we focused more particularly on IRE1. During my PhD thesis, I participated to a study that demonstrated the role of IRE1 signaling in the regulation of VEGF expression in vitro and tumor growth and angiogenesis in vivo. The latter was carried out using a ortotopic implantation model of human glioma-derived cells. As a consequence IRE1 could certainly constitute a potential therapeutic target. In an attempt to modulate IRE1 activity, we aimed at identifying artificial modulators of its activity. To this end, we designed an in vitro assay capable of monitoring the first essential step in IRE1 activation process, namely its dimerization. This assay allowed us to identify a peptide able to interfere with IRE1 dimer formation, but, unexpectedly, to also increase its RNAse activity in vitro and in vivo. We propose that this interfacial peptide, derived from IRE1 kinase domain could promote a conformational change in IRE1 cytosolic domain and consequently lead to an increase in its enzymatic activity. This modulator could represent a new tool with therapeutic potential that could then be used in protein misfolding diseases for instance

    Stress du réticulum endoplasmique

    No full text
    Lors de l’accumulation de protéines mal conformées dans le réticulum endoplasmique (RE), une réponse adaptative nommée UPR (unfolded protein response) est induite afin de protéger la cellule contre ce stress. Chez les métazoaires, cette réponse est assurée par trois protéines transmembranaires du RE : PERK (PKR-related endoplasmic reticulum kinase), ATF6 (activating transcription factor 6) et IRE1 (inositol requiring enzyme 1). Parmi ces trois protéines, seule IRE1 est conservée au cours de l’évolution. IRE1 est une protéine transmembranaire de type I qui possède deux activités enzymatiques, sérine/ thréonine kinase et endoribonucléasique. Les structures cristallines des domaines luminal et cytosolique de la protéine IRE1 obtenues chez S. cerevisiae ont permis de mieux comprendre son mode de fonctionnement. Néanmoins, de nombreuses zones d’ombres subsistent concernant les mécanismes de régulation d’IRE1 ainsi que les différentes voies de signalisation induites en réponse à son activation. Cette revue propose une synthèse des connaissances actuelles à propos de la protéine IRE1 et analyse particulièrement le rôle d’IRE1 dans les mécanismes physiologiques et physiopathologiques

    The Autophagy Pathway: A Critical Route in the Disposal of Alpha 1-Antitrypsin Aggregates That Holds Many Mysteries

    No full text
    International audienceThe maintenance of proteome homeostasis, or proteostasis, is crucial for preserving cellular functions and for cellular adaptation to environmental challenges and changes in physiological conditions. The capacity of cells to maintain proteostasis requires precise control and coordination of protein synthesis, folding, conformational maintenance, and clearance. Thus, protein degradation by the ubiquitin–proteasome system (UPS) or the autophagy–lysosomal system plays an essential role in cellular functions. However, failure of the UPS or the autophagic process can lead to the development of various diseases (aging-associated diseases, cancer), thus both these pathways have become attractive targets in the treatment of protein conformational diseases, such as alpha 1-antitrypsin deficiency (AATD). The Z alpha 1-antitrypsin (Z-AAT) misfolded variant of the serine protease alpha 1-antitrypsin (AAT) is caused by a structural change that predisposes it to protein aggregation and dramatic accumulation in the form of inclusion bodies within liver hepatocytes. This can lead to clinically significant liver disease requiring liver transplantation in childhood or adulthood. Treatment of mice with autophagy enhancers was found to reduce hepatic Z-AAT aggregate levels and protect them from AATD hepatotoxicity. To date, liver transplantation is the only curative therapeutic option for patients with AATD-mediated liver disease. Therefore, the development and discovery of new therapeutic approaches to delay or overcome disease progression is a top priority. Herein, we review AATD-mediated liver disease and the overall process of autophagy. We highlight the role of this system in the regulation of Z-variant degradation and its implication in AATD-medicated liver disease, including some open questions that remain challenges in the field and require further elucidation. Finally, we discuss how manipulation of autophagy could provide multiple routes of therapeutic benefit in AATD-mediated liver disease
    • …
    corecore