827 research outputs found

    The missing metals problem. III How many metals are expelled from galaxies?

    Get PDF
    [Abridged] We revisit the metal budget at z~2. In the first two papers of this series, we already showed that ~30% (to <60% if extrapolating the LF) of the metals are observed in all z~2.5 galaxies detected in current surveys. Here, we extend our analysis to the metals outside galaxies, i.e. in intergalactic medium (IGM), using observational data and analytical calculations. Our results for the two are strikingly similar: (1) Observationally, we find that, besides the small (5%) contribution of DLAs, the forest and sub-DLAs contribute subtantially to make <30--45% of the metal budget, but neither of these appear to be sufficient to close the metal budget. The forest accounts for 15--30% depending on the UV background, and sub-DLAs for >2% to <17% depending on the ionization fraction. Together, the `missing metals' problem is substantially eased. (2) We perform analytical calculations based on the effective yield--mass relation. At z=2, we find that the method predicts that 2$--50% of the metals have been ejected from galaxies into the IGM, consistent with the observations. The metal ejection is predominantly by L<1/3L_B^*(z=2) galaxies, which are responsible for 90% the metal enrichment, while the 50 percentile is at L~1/10L^*_B(z=2). As a consequence, if indeed 50% of the metals have been ejected from galaxies, 3--5 bursts of star formation are required per galaxy prior to z=2. The ratio between the mass of metals outside galaxies to those in stars has changed from z=2 to z=0: it was 2:1 or 1:1 and is now 1:8 or 1:9. This evolution implies that a significant fraction of the IGM metals will cool and fall back into galaxies.Comment: 18pages, MNRAS, in press; small changes to match proofs; extended version with summary tabl

    Comparison of numerical schemes for solving the advection equation

    Get PDF
    AbstractWe report on the dispersion and dissipation properties of numerical schemes aimed at solving the one-dimensional advection equation. The study is based on the consistency error, which is explicitly calculated for various standard finite-difference schemes. The oscillation and damping features of the numerical solutions are shown to be explained via a generalized Airy-like function. In the specific case of the advection of a step function, the solutions of the equivalent equations are systematically calculated and shown to recover the numerical solutions. A particular emphasis is put on one third-order accurate scheme, which involves a weak smearing of the step

    The missing metals problem: I. How many metals are in submm galaxies?

    Full text link
    We use a sample of submillimetre-selected galaxies (SMGs) with molecular gas and dynamical mass measurements from the literature to put constraints on the contribution of such galaxies to the total metal budget. Compared to Lyman break galaxies (LBGs), for example, SMGs are rarer (by a factor of 10 or more), but contain much more gas and are more metal rich. We estimate that SMGs brighter than 3 mJy contain only less than 9% of the metals when we combine the observed dynamical masses (few×1011\times 10^{11} \msun), number density (n≃10−4n\simeq 10^{-4} Mpc−3^{-3}), observed gas metallicity (1--2 x solar), and observed gas fractions (~40%) assuming a molecular to neutral hydrogen ratio of 1. Including SMGs fainter than 3 mJy, we estimate that SMGs contain at the most 15% of the metals, where our incompleteness correction is estimated from the dust mass function. Our results are strong upper limits given that high gas fractions and high overall metallicity are mutually exclusive. In summary, SMGs make a significant contribution to the metal budget (< 15%) but not sufficient to solve the `missing metals problem.' A consequence of our results is that SMGs can only add ≈3.5\approx 3.5% to ΩDLA\Omega_{\rm DLA}, and can not be the source of a significant population of dusty DLAs.Comment: 6 pages, 1 figure. Accepted for publication in MNRAS. Minor changes to match the published tex

    The missing metals problem: II. How many metals are in z ~ 2.2 galaxies?

    Full text link
    In the context of the ``missing metals problem'', the contributions of the UV-selected z=2.2 ``BX'' galaxies and z=2.5 ``distant red galaxies'' (DRGs) have not been discussed previously. Here we show that: (i) DRGs only make a marginal contribution to the metal budget (~ 5%); (ii) BX galaxies contribute as much as 18% to the metal budget; and (iii) the K-bright subsample (K<20K<20) of the BX sample (roughly equivalent to the `BzK' selected samples) contributes roughly half of this 18%, owing both to their larger stellar masses and higher metallicities, implying that the rare K-bright galaxies at z>2 are a major source of metals in the budget. We showed in the first paper of this series that submm galaxies (SMGs) brighter than 3 mJy contribute ~5% (<9% as an upper limit) to the metal budget. Adding the contribution of SMGs and damped Ly-alpha absorbers, to the contribution of UV selected galaxies, implies that at least 30% of the metals (in galaxies) have been accounted for at z=2. The cosmic metal density thus accounted for is ~ 1.3\times 10^6 \rhosun. This is a lower limit given that galaxies on the faint-end of the luminosity function are not included. An estimate of the distribution of metals in local galaxies as a function luminosity suggests that galaxies with luminosity less than L^{\star}$ contribute about half of the total mass of metals. If the metals in galaxies at z ~ 2 are similarly distributed then faint galaxies alone cannot solve the `missing metals problem.' Galaxy populations at z ~ 2 only account for about 50% of the total metals predicted.Comment: 4 pages, 1 figure, accepted for publication in MNRAS Letters; small changes to match the published tex

    H-alpha Imaging with HST+NICMOS of An Elusive Damped Ly-alpha Cloud at z=0.6

    Get PDF
    Despite previous intensive ground-based imaging and spectroscopic campaigns and wide-band HST imaging of the z=0.927 QSO 3C336 field, the galaxy that hosts the damped Ly-alpha system along this line-of-sight has eluded detection. We present a deep narrow-band H-alpha image of the field of this z=0.656 damped Ly-alpha absorber, obtained through the F108N filter of NICMOS 1 onboard the Hubble Space Telescope. The goal of this project was to detect any H-alpha emission 10 times closer than previous studies to unveil the damped absorber. We do not detect H-alpha emission between 0.05'' and 6'' (0.24 and 30 h−1h^{-1} kpc) from the QSO, with a 3-sigma flux limit of 3.70×10−17h−23.70 \times 10^{-17} h^{-2} erg/s/cm^2 for an unresolved source, corresponding to a star formation rate (SFR) of 0.3h−20.3 h^{-2} M_sun/yr. This leads to a 3-sigma upper limit of 0.15 M_sun/yr/kpc^2 on the SFR density, or a maximum SFR of 1.87 M_sun/yr assuming a disk of 4 kpc in diameter. This result adds to the number of low redshift damped Ly-alpha absorbers that are not associated with the central regions of Milky-Way-like disks. Damped Ly-alpha absorption can arise from high density concentrations in a variety of galactic environments including some that, despite their high local HI densities, are not conducive to widespread star formation.Comment: 18 pages, 3 figures. Replaced to match published version in ApJ, 550, 585 (Apr 1 2001

    A Comparison of Circumgalactic Mg ii Absorption between the TNG50 Simulation and the MEGAFLOW Survey

    Get PDF
    The circumgalactic medium (CGM) contains information on gas flows around galaxies, such as accretion and supernova-driven winds, which are difficult to constrain from observations alone. Here, we use the high-resolution TNG50 cosmological magnetohydrodynamical simulation to study the properties and kinematics of the CGM around star-forming galaxies in 1011.5-1012 M o˙ halos at z ≃ 1 using mock Mg ii absorption lines, which we generate by postprocessing halos to account for photoionization in the presence of a UV background. We find that the Mg ii gas is a very good tracer of the cold CGM, which is accreting inward at inflow velocities of up to 50 km s-1. For sight lines aligned with the galaxy's major axis, we find that Mg ii absorption lines are kinematically shifted due to the cold CGM's significant corotation at speeds up to 50% of the virial velocity for impact parameters up to 60 kpc. We compare mock Mg ii spectra to observations from the MusE GAs FLow and Wind (MEGAFLOW) survey of strong Mg ii absorbers (EW2796 Å0 &gt; 0.5 Å). After matching the equivalent-width (EW) selection, we find that the mock Mg ii spectra reflect the diversity of observed kinematics and EWs from MEGAFLOW, even though the sight lines probe a very small fraction of the CGM. Mg ii absorption in higher-mass halos is stronger and broader than in lower-mass halos but has qualitatively similar kinematics. The median-specific angular momentum of the Mg ii CGM gas in TNG50 is very similar to that of the entire CGM and only differs from non-CGM components of the halo by normalization factors of â‰Č1 dex

    SINFONI Integral Field Spectroscopy of z~2 UV-selected Galaxies: Rotation Curves and Dynamical Evolution

    Get PDF
    We present 0.5" resolution near-IR integral field spectroscopy of the Ha line emission of 14 z~2 UV-selected BM/BX galaxies obtained with SINFONI at ESO/VLT. The mean Ha half-light radius r_1/2 is about 4kpc and line emission is detected over > ~20kpc in several sources. In 9 sources, we detect spatially-resolved velocity gradients, from 40 to 410 km/s over ~10kpc. The observed kinematics of the larger systems are consistent with orbital motions. Four galaxies are well described by rotating disks with clumpy morphologies and we extract rotation curves out to radii > ~10kpc. One or two galaxies exhibit signatures more consistent with mergers. Analyzing all 14 galaxies in the framework of rotating disks, we infer mean inclination- and beam-corrected maximum circular velocities v_c of 180+-90 km/s and dynamical masses of (0.5-25)x10^10 Msun within r_1/2. On average, the dynamical masses are consistent with photometric stellar masses assuming a Chabrier/Kroupa IMF but too small for a 0.1-100 Msun Salpeter IMF. The specific angular momenta of our BM/BX galaxies are similar to those of local late-type galaxies. The specific angular momenta of their baryons are comparable to those of their dark matter halos. Extrapolating from the average v_c at 10kpc, the virial mass of the typical halo of a galaxy in our sample is 10^(11.7+-0.5) Msun. Kinematic modeling of the 3 best cases implies a ratio of v_c to local velocity dispersion of order 2-4 and accordingly a large geometric thickness. We argue that this suggests a mass accretion (alternatively, gas exhaustion) timescale of ~500Myr. We also argue that if our BM/BX galaxies were initially gas rich, their clumpy disks will subsequently lose their angular momentum and form compact bulges on a timescale of ~1 Gyr. [ABRIDGED]Comment: Accepted for publication in the Astrophysical Journal. 17 pages, 5 color figure

    Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview

    Get PDF
    Thanks to innovative sample-preparation and sequencing technologies, gene expression in individual cells can now be measured for thousands of cells in a single experiment. Since its introduction, single-cell RNA sequencing (scRNA-seq) approaches have revolutionized the genomics field as they created unprecedented opportunities for resolving cell heterogeneity by exploring gene expression profiles at a single-cell resolution. However, the rapidly evolving field of scRNA-seq invoked the emergence of various analytics approaches aimed to maximize the full potential of this novel strategy. Unlike population-based RNA sequencing approaches, scRNA seq necessitates comprehensive computational tools to address high data complexity and keep up with the emerging single-cell associated challenges. Despite the vast number of analytical methods, a universal standardization is lacking. While this reflects the fields’ immaturity, it may also encumber a newcomer to blend in. In this review, we aim to bridge over the abovementioned hurdle and propose four ready-to-use pipelines for scRNA-seq analysis easily accessible by a newcomer, that could fit various biological data types. Here we provide an overview of the currently available single-cell technologies for cell isolation and library preparation and a step by step guide that covers the entire canonical analytic workflow to analyse scRNA-seq data including read mapping, quality controls, gene expression quantification, normalization, feature selection, dimensionality reduction, and cell clustering useful for trajectory inference and differential expression. Such workflow guidelines will escort novices as well as expert users in the analysis of complex scRNA-seq datasets, thus further expanding the research potential of single-cell approaches in basic science, and envisaging its future implementation as best practice in the field

    Optical properties and spatial distribution of MgII absorbers from SDSS image stacking

    Full text link
    We present a statistical analysis of the photometric properties and spatial distribution of more than 2,800 MgII absorbers with 0.37<z<1 and rest equivalent width W_0(\lambda2796)>0.8\AA detected in SDSS quasar spectra. Using an improved image stacking technique, we measure the cross-correlation between MgII gas and light (in the g, r, i and z-bands) from 10 to 200 kpc and infer the light-weighted impact parameter distribution of MgII absorbers. Such a quantity is well described by a power-law with an index that strongly depends on W_0, ranging from ~-1 for W_0~ 1.5\AA. At redshift 0.37<z<0.55, we find the average luminosity enclosed within 100 kpc around MgII absorbers to be M_g=-20.65+-0.11 mag, which is ~0.5 L_g*. The global luminosity-weighted colors are typical of present-day intermediate type galaxies. However, while the light of weaker absorbers originates mostly from red passive galaxies, stronger systems display the colors of blue star-forming galaxies. Based on these observations, we argue that the origin of strong MgII absorber systems might be better explained by models of metal-enriched gas outflows from star-forming/bursting galaxies. Our analysis does not show any redshift dependence for both impact parameter and rest-frame colors up to z=1. However, we do observe a brightening of the absorbers related light at high redshift (~50% from z~0.4 to 1). We argue that MgII absorbers are a phenomenon typical of a given evolutionary phase that more massive galaxies experience earlier than less massive ones, in a downsizing fashion. (abridged)Comment: ApJ in press, 28 pages, 16 figures, using emulateapj. Only typo corrections wrt the original submission (v1

    SINGULAR PERTURBATIONS AND BOUNDARY LAYER THEORY FOR CONVECTION-DIFFUSION EQUATIONS IN A CIRCLE: THE GENERIC NONCOMPATIBLE CASE

    Get PDF
    We study the boundary layers and singularities generated by a convection-diffusion equation in a circle with noncompatible data. More precisely, the boundary of the circle has two characteristic points where the boundary conditions and the external data ff are not compatible. Very complex singular behaviors are observed, and we analyze them systematically for highly noncompatible data. The problem studied here is a simplified model for problems of major importance in fluid mechanics and thermohydraulics and in physics.open4
    • 

    corecore