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A b s t r a c t - - W e  report on the dispersion and dissipation properties of numerical schemes aimed at 
solving the one-dimensional advection equation. The study is based on the consistency error, which 
is explicitly calculated for various standard finite-difference schemes. The oscillation and damping 
features of the numerical solutions are shown to be explained via a generalized Airy-like function. 
In the specific case of the advection of a step function, the solutions of the equivalent equations are 
systematically calculated and shown to recover the numerical solutions. A particular emphasis is put 
on one third-order accurate scheme, which involves a weak smearing of the step. © 2003 Elsevier 
Science Ltd. All rights reserved. 

K e y w o r d s - - A d v e c t i o n  equation, Numerical schemes, Spurious oscillations. 

1. I N T R O D U C T I O N  

In  th is  paper ,  we s t u d y  t h e  1D advec t ion  equa t ion  0u a~ + V ~ = 0 as a p ro to typ i ca l  hyperbo l ic  

equa t ion ,  where  u deno tes  t h e  advec ted  quant i ty ,  t t h e  t ime,  x t he  space,  and V a cons tan t  

velocity.  Choos ing  uo(x) as t he  ini t ia l  cond i t ion  leads to  t he  exac t  so lu t ion  u(x,  t) = uo(x - Vt).  
Discre t i s ing  this  e q u a t i o n  for numer ica l  solving induces  an inaccuracy  t h a t  we have examined ,  

w i th  pa r t i cu la r  emphas i s  on the  p roper t i es  of d ispers ion and d iss ipa t ion  of  t he  numer ica l  solut ion.  

2. M E T H O D  O F  A N A L Y S I S  

We use t h e  m e t h o d  of  different ial  a p p r o x i m a t i o n  [1]. For  p rac t i ca l  purpose ,  we keep only one 

or two t e r m s  for t h e  different ial  a p p r o x i m a t i o n  (we refer to [2,3] for m a t h e m a t i c a l  jus t i f icat ions) .  
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Thus, for a scheme of order n - 1, the difference equation is replaced by the following differential 
approximation: 

Ou Ou c Onu d On+lu 
0-~ + V Ox n Ox '~ + n + 1 0 x  n+l" (1) 

For an even-order scheme, the first term induces dispersion and the second one induces dissipation. 
For an odd-order scheme, the first term is dissipative and the second one is dispersive. 

By using Fourier transform, we get an integral representation of the solution, which reads for 
a scheme of even order n - 1 (mainly dispersive) 

// U(X, t) = U(X, O) * dkeik(x-Vt)e±iCtk"/ne-dtk"+l/(n+l), (2) 
o o  

and for a scheme of odd-order n - 1 (mainly dissipative) 

u(x, t) = u(x, O) * ~_'~ dkeik(x-Vt)e-Ctk~/ne +idtk"+l/(n+l), (3) 
fx)  

the * designates a convolution product 
The integral in the previous expressions are generalized Airy functions. For the dispersive case 

(n odd, i.e., even-order scheme), they are defined as 

/? Ai~'b(y) = dke ~ky+ik'V~-bk"÷l/(~+l) (4) 

and, for the dissipative case (n even, i.e., odd-order scheme), as 

/? Ain'b'(y) = dke ~ky-k"/n+~b'k°÷l/(n+l) (5) 

The number b measures the ratio dissipation-to-dispersion of a dispersive scheme and b ~ the 
dispersion-to-dissipation ratio for a dissipative scheme. 

For large values of their arguments, these functions have accurate asymptotic expansions in 
terms of exponential and trigonometric functions, which rule both the wavelength and the damp- 
ing of the numerically generated oscillations, as exposed in the following section. 

3. P R E D I C T I O N  O F  T H E  A D V E C T I O N  O F  A S T E P  
F U N C T I O N  B Y  T H E  N U M E R I C A L  S C H E M E S  

We study the behaviour of generic numerical schemes advecting a step. We compute an asymp- 
totic expansion of the generalized Airy functions describing the behaviour of these schemes with 
large arguments, in order to predict the amplitude and damping of the spurious numerical oscil- 
lations far from the step. 

3.1. S e c o n d - O r d e r  A c c u r a t e  S c h e m e s  

The main extra term introduced by the scheme is now dispersive. Advecting a step H(x) ,  we 
get 

u(x , t )  - 1 ~ [(x (ct)l/3 P A i  3'° ( c t ) l /3  j , (6) 

PAi is a primitive of the Airy function. The behaviour of PAi for large x, and more specifically 
the oscillations far from the step, are predicted by using the steepest descent method. The 
integral can be written as the sum of a pole contribution, and the dicretisation induced critical 
point contribution 

1 _ _  x - 3 / 4 e - 2 x a / 2 / 3  
Ic ~ 2 4 ~  . (7) 
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(a) Influence of dissipation in the function PAi3,b(x). 
and 1.275. 

The extremes are -0.038 

9~ ~ 

(b) Influence of dispersion in the function PAi4'b'(x). The extremes are -0.052 
and 1.175. 

Figure 1. 
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Figure 2. Lax-Wendroff scheme. (a) Numerical results. (b) Response calculated with 
the function PAi3'b(x). 

The solution decreases exponentially,  wi thout  oscillations, for x > 0. The  numerical  solution 

converges wi thout  oscil lating towards  the  t rue  solution. 

For x < 0, the  sum of the  contr ibut ions of the  two real crit ical points  turns  out  to be 

1 (3 4) IC  ..~ - ' - ' ~  ]x]-3/4 sin ] X [  3 / 2  - -  . (s) 

The decrease is ra ther  slow (Ix[ -3/4) abd in addi t ion involves spurious oscillations. The second- 

order accurate  scheme with posit ive c is monotonous for x > 0 but  generates  oscil lations for x < 0. 

For negative values of c, the  results are similar,  but  with oscillations for x > 0 and exponent ia l  

decrease for x < 0. 
The  long range osci l latory behaviour is a specific feature of second-order  accurate  schemes 

without  dissipat ion,  such as the leapfrog scheme, as we will see in Pa r t  5. However, for schemes 
such as Lax-Wendroff  (c > 0) or Beam-Warming  (c < 0), we have to  deal  wi th  the  fourth-order 
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funct ion PAi3'b(x). 

400 

1 
dissipation term and to consider functions Ai 3,b#°. The dissipation-to-dispersion ratio b is equal 
to d/4c4/3t 1/3. The stat ionary points, which now satisfy x + k 2 Jr ibk 3 -- 0, have a nonvanishing 

imaginary part. Because of the nonvanishing imaginary part  ibx/2  of these points, the oscillations 
are now damped. The damping increases with b, as shown in Figure 1. 

We should notice tha t  for these second-order accurate schemes, b decreases with time. There- 
fore, the spurious oscillations become less damped with increasing time. 

3.2. T h i r d - O r d e r  S c h e m e s  

We now get for the step advection 

dk ei=k-(k4/4) = PAi4'°(x) .  (9) 
c o  

The asymptotic  expansion of the function PAi4'°(x) for large x appears as the sum of two critical 
points contributions for x < 0. For x > 0, as before, we have to include the pole contribution. 
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Figure 4. Corrected Lax-Wendroff scheme. (a) Numerical results. 
calculated with the function PAi  4,b' (x). 

(b) Response 

For x > 0, we get 

PAi4'°(x) ~ 1 + V ~ sin - (:o) 

and for x < 0 

(11) 

Oscillations occur for third-order schemes. However, they are exponentially damped, and there- 
fore, less severe than for the second-order schemes (see (8)). 
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The effect of the dispersion terms is governed by the behaviour of the function Ai 4'b'. For 
small enough dispersion-to-dissipation ratio b I, the critical points move in the complex plane~ but 
remain far enough from the real axis, so that  the behaviour remains the same, with exponentially 
damped oscillations. However, for b' large enough, some critical points approach the real axis, 
generating weakly damped oscillations (Figure 1). 

3.3. H i g h e r - O r d e r  S c h e m e s  

We obtain the same type of behaviour for higher-order schemes: exponential damping of oscil- 
lations for odd-order schemes on both sides of the step, weakly damped oscillations on one side 
of the step for even-order schemes. 

4 .  E Q U I V A L E N T  P D E  F O R  S O M E  T Y P I C A L  S C H E M E S  

We have chosen some representative schemes: upwind (first-order), Lax-Wendroff, Beam- 
Warming, and Fromm, representative of second-order schemes with dissipation, leapfrog for 
nondissipative second-order schemes, Balakin (order 4), and a third-order scheme derived from 
Lax-Wendroff. 

We have gathered in Table 1 the coefficients Cn+l which multiply the operators A x ' V ( n  + l) 
O'~+l/Ox n+l in the consistency error eg. The following contractions have been used: UP (for 
upwind scheme), LW (Lax-Wendroff), WB (Warming-Beam), Fr (Fromm), LF (leap-frog), Ba 
(Balakin), L2 (Lax-Wendroff corrected). 

The smaller the absolute value of the coefficients, the better the scheme. The dissipative feature 
is provided by the terms proportional to Ax, Ax 3, and Ax 5 which have to be, negative, positive, 
and negative, respectively. For 77 = 1, all the terms nullify, except for the I C  scheme: the schemes 
become simple translation and are exact solvers of the advection equation. 

5.  N U M E R I C A L  R E S U L T S  

We have examined the various schemes studied in Section 4, and obtain excellent agreement. 
We present a limited number of results to save space. 

5.1. S e c o n d - O r d e r  S c h e m e s  

LAx-WENDROFF SCHEME. The solution is a primitive of the Airy function PAi3'b[(x - V t ) /  
(ct)1/3], with c > 0. Oscillations can, therefore, be seen in the wake of the front; their wavelength 
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increases with time according to t 1/3, and the front width as well. The ratio b of dissipation 
to dispersion decreases according to t -W3, so that  the oscillation amplitude increases. We have: 
Ibl (t = 500) = 8.510 -2. At time t = 500, the amplitude of the oscillations maximises at 24% of the 
plateau, close to the 27.7% value got without dissipation. The Airy function PAl 3,b reproduces 
very well the pattern obtained numerically (Figure 2). 

LEAP-FROG SCHEME. The solution is given by the function PAi3'°[(x - Vt)/(ct) l /3],  the space 
scale varies along time. The nondissipative feature of this scheme induces a large spreading of the 
oscillations (Figure 3). The latter increase rapidly to saturate at time t = 20 with 27% amplitude, 
which corresponds to the maximum value (1.275) of the function PAi 3,°. This function reproduces 
correctly the oscillations close to the front. At early times, the oscillations are damped by the 
mesh. Nevertheless, a high frequency signal can be diagnosed, which is badly reproduced by the 
differential approximation. 

5.2. T h i r d - O r d e r  S c h e m e  

LAX-WENDROFF CORRECTED SCHEME. With correction of type with noncentered operator, a 
hollow and a hump can be seen on both the front and the back of the step, respectively, with very 
weak amplitude: 0.068. In this case, we have Ib'l = 3.210 -3, which indicates a weakly dispersive 
scheme. The solution is well described by the Airy function PAi 4,b' (Figure 4). 

6. C O N C L U S I O N  

In this paper, we have investigated the behaviour of the numerical solution, provided by various 
methods, in the specific case of the advection of a sharp step. This behaviour is shown and 
verified, via some examples, to be fully reproduced by primitives of functions which generalize 
the standard Airy function. 

For even-order schemes, these functions, called dispersive Airy functions, present weakly damp- 
ed spurious oscillations. With time, the dissipation-to-dispersion ratio decreases and induces a 
slower decrease of the oscillations when parting from the step front. For large time, the solution 
converges towards a purely dispersive Airy function. 

Odd-order accurate schemes are governed by dissipative Airy functions,with strongly damped 
oscillations. Weak overshoots (5% for zero dispersion for the third-order scheme), appear on each 
side of the step. Moreover, the oscillations damp with time. 

These various comments put emphasis on odd-order accurate schemes. Although they are not 
monotonic (except for first order), their dissipative feature induce less oscillations than even-order 
schemes and these oscillations damp with time, instead of amplifying as for odd-order schemes. 
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